Presentation is loading. Please wait.

Presentation is loading. Please wait.

Fritz-Haber-Institut Berlin

Similar presentations


Presentation on theme: "Fritz-Haber-Institut Berlin"— Presentation transcript:

1

2 Fritz-Haber-Institut Berlin
Systemic approach towards the energy system: the critical role of chemistry Robert Schlögl MPI CEC: Fritz-Haber-Institut Berlin

3 Energy supply A vital component of the society.
National infrastructure with regional and global interconnections (import-export). A multidimensional system: Societal Economical Technical Structure mixed between regulated-monopolistic and free market organization. Political prize structures, never full cost.

4 Systemic views on energy supply

5 Efficiency challenge in chemical energy conversion: Fossil has a great historical advantage
Energy storage requires excessive activation as the reaction occurs uphill. Kinetics requires a stable product (no waste of excess hydrogen as often assumed!). gasoline reacts vigorously with oxygen as several very stable products result and a massive volume expansion occurs.

6 The tax is the higher the larger the change in free energy is.
To remember Every step of chemical energy conversion changes the free energy (store or release). It is fundamentally connected with a tribute to the thermal energy bath („tax“). The tax is the higher the larger the change in free energy is. The tax can be “negotiated” through chemical catalysis. Multiple steps in free energy change reduce the tax per step but increase their total sum.

7 A systemic solution Storage (transport) of large amounts of energy
I have a plan....

8 The energy challenge is systemic

9 All begins with a chemical challenge
Integration of primary solar electricity into demand structure is the most efficient energy system. Splitting of water to obtain hydrogen as primary solar fuel is the challenge. Electrolysis at partial variable load is the key technology. Oxygen evolution is the limiting reaction. Electrode degradation and use of excessive amounts of noble metal limit practical application.

10 Single-molecule fuels from sustainable sources
The solar refinery concept power to chemicals as initiator for power to gas Single-molecule fuels from sustainable sources

11 Small molecule activation: learn from nature. No noble metals!
2H+ + 2e- H2 Hydrogenase [Ni,Fe] 2 H2O O2 + 4H+ + 4e- Photosystem II [Mn] Cytochrome ox. [Fe/Cu] CO2 + 6H+ + 6e- H3COH + H2O CO2 Reductase [Mo] Dehydrogenases [Zn] 2CH4 + O2 2H3COH Methane Monoxygenase [Fe,Cu] N2 + 6H+ +6e- 2NH3 Nitrogenase [Fe,Mo, V] We want to understand this chemistry but we do not want to mimic or model it. (e.g. mechanistic not structural inspiration)

12 Water splitting: a glimpse into the science

13 German „Energiewende“ in 2011
Stop of nuclear power generation in 2022. Energy system according to „Energiekonzept 2010“: Savings of primary energy Massive use of renewable sources Reduction of CO2 emissions by 80% until 2050 in a linear fashion. Massive subsidy of renewable electricity generation (EEG): Preference in usage Guaranteed price above market price Protection against price drop at EEX.

14 Structure of the German Energy system
The current debate concentrates on nuclear/renewable electrical energy. These account for about 10% of the energy content (emissions) of the total system. The main targets of the energy system transformation are hardly touched. Extreme focus on pricing arguments. Source: AGEB 2013

15 Electricity prizes Electricity prices are high in Germany in international and EU relations. The prize evolution is different for private households and large industry (high tension consumers). A substantial contribution for the small users comes from the EEG finance (about 5 ct/kWh). Source AGEB 2013, BMWI 2012

16 German electricity Total output and import/export changed over time and after „Wende“. Renewables enormously increased their shares but not because of „Wende“ (EEG). Nuclear decreased substantially partly because of “Wende” Recently lignite and coal grow on expense of gas: negative feedback due to pricing. Source: AGEB 2013

17 Rebound effects of the system
Systemic character Despite 100 Mtons CO2 saving through renewable electricity more CO2 emissions in 2012: Rebound effects of the system

18 Energy systems: from requirements rather than from the past
Sustainable : closed material flows for all harmful species. Scalable: use processes and materials working on abundant resources without open risks. Subsidiary: address challenges locally where they arise. Stable: interconnect solutions to ensure system stability where necessary. The consequence is an increase in complexity and a change in our target function (complete economics). Time scales are long (lifetime of infrastructure systems) also long transition periods: chance for novel approaches. The users (you!) have to drive the change otherwise catastrophic evolution.

19 Dem Anwenden muss das Erkennen vorausgehen
Max Planck Thank You

20


Download ppt "Fritz-Haber-Institut Berlin"

Similar presentations


Ads by Google