Presentation is loading. Please wait.

Presentation is loading. Please wait.

Observation of Trans-Ethanol and

Similar presentations


Presentation on theme: "Observation of Trans-Ethanol and"— Presentation transcript:

1 Observation of Trans-Ethanol and
Gauche-Ethanol Complexes with Benzene Using Matrix Isolation Infrared Spectroscopy Jay C. Amicangelo, Matthew J. Silbaugh, Tracy A. Jones, Benjamin C. Mull

2 CH3OH-C6H6 Complex 1:1 H- complex observed in low temperature argon and nitrogen matrices 2013 ISMS TE08; ISMS RJ14 CH3OH+C6H6 CH3OH C6H6 20 K Ar Matrix 17 K N2 Matrix 1:1 complex 1:1 complex O–H Frequency Shifts expt Ar = cm-1 expt N2 = cm-1 MP2 = cm-1 MP2/aug-cc-pVDZ 16.0 kJ/mol 2.42 Å

3 C2H5OH Rotation of OH relative to CH3 → 2 conformers
Trans (180°) & gauche (60°) MP2/aug-cc-pVDZ relaxed potential energy scan gauche trans gauche trans ΔEg-t (MP2/aDZ) = 1.1 kJ/mol ΔEg-t (B3LYP/aDZ) = 0.78 kJ/mol ΔEg-t (Exp, MW) = 0.49 kJ/mol (J. Chem. Phys. 1980, 76, 4300) ΔEg-t (Exp, far-IR) = 0.50 kJ/mol (J. Mol. Struct. 1989, 238, 195) ΔEg-t (Exp, Xe soln-IR) = 0.74 kJ/mol (J. Mol. Struct. 2011, 985, 202)

4 Gas Phase IR Spectra of C2H5OH
MP2/aug-cc-pVDZ trans gauche J. Mol. Spect. 2011, 985, 202

5 Matrix Isolation IR Spectra of C2H5OH
Nitrogen vs argon matrices 1:1800 C2H5OH:M Nitrogen Matrix Argon Matrix B3LYP/aug-cc-pVDZ trans 30 K 36 K 28 K gauche 8 K 8 K Nitrogen matrix  both trans and gauche observed trans → gauche at 30 K Argon matrix  only trans observed J. Phys. Chem. A 1998, 102, 5789

6 Matrix Isolation Infrared Spectroscopy Experiments
C2H5OH + C6H6 co-depositions in Ar & N2 matrices K deposition; 4 – 6 mmol/hr; hours; 0.5 cm-1 1: :1600 S:M ratios Annealing: Ar → 35 K & N2 → 30 K Isotopic experiments: C2D5OD + C6H6 C6H6:Ar/N2 C2H5OH:Ar/N2

7 MP2/aug-cc-pVDZ Optimized Structures
C2H5OH-C6H6 Complex Calculations B3LYP/aug-cc-pVDZ & MP2/aug-cc-pVDZ Optimization & BSSE corrected energies (kJ/mol) MP2/aug-cc-pVDZ Optimized Structures 2.41 Å 2.41 Å 2.38 Å 2.37 Å trans eclipsed trans staggered gauche eclipsed gauche staggered Method Trans eclipsed Trans staggered Gauche eclipsed Gauche staggered B3LYP/aDZ 5.2 5.3 5.1 MP2/aDZ 16.3 17.6 17.5

8 gauche barrier ≈ 0.11 kJ/mol
C2H5OH-C6H6 Rigid Potential Energy Scan MP2/aug-cc-pVDZ; C6H6 rotation & C2H5OH fixed trans eclipsed gauche eclipsed trans barrier ≈ 0.06 kJ/mol gauche barrier ≈ 0.11 kJ/mol kT = 0.14 – 0.17 kJ/mol at 17 – 20 K

9 C2H5OH-C6H6 Complex Calculations MP2/aug-cc-pVDZ frequency analysis
48.8 cm-1 49.5 cm-1 trans staggered trans eclipsed Δt-g complex ≈ 20 cm-1 trans monomer 57.2 cm-1 58.0 cm-1 gauche staggered gauche eclipsed gauche monomer

10 C2H5OH-C6H6 Complex Calculations B3LYP/aug-cc-pVDZ frequency analysis
34.2 cm-1 34.8 cm-1 trans eclipsed trans staggered Δt-g complex ≈ 18 cm-1 trans monomer 33.2 cm-1 33.5 cm-1 gauche eclipsed gauche staggered gauche monomer

11 C2H5OH:Ar vs C2H5OH:N2 Matrix Spectra
Ar  1:1600, 20 K deposition & 35 K anneal N2  1:3200, 17 K deposition & 30 K anneal Δt-g (O−H) = 3.9 cm-1 N2 30 K trans gauche N2 17 K Ar 35 K trans Ar 20 K N2 30 K N2  trans & gauche observed trans → gauche at 30 K gauche trans trans N2 17 K Ar  only trans observed Ar 35 K trans trans Ar 20 K

12 C2H5OH:N2 + C6H6:N2 Concentration Study
1:200 – 1:1600 S:M ratios; O−H stretching region 17 K co-depositions gauche complex C6H6 trans complex ? 1:200 1:400 1:800 1:1600 1:3200 monomer Δt-g (O−H) = 3.9 cm-1 17 K co-depositions + 30 K anneal higher complex gauche complex trans complex C6H6 1:200 ? 1:400 1:800 1:1600 1:3200 monomer

13 C2H5OH:N2 + C6H6:N2 Isotopic Spectra
C2H5OH/C2D5OD; O−H/O−D stretching region 1:1600 C2H5OH + 1:1600 C6H6 1:800 C2D5OD + 1:800 C6H6 17 K 17 K trans complex gauche complex E + B gauche complex E + B E trans complex E B B 30 K 30 K gauche complex gauche complex E + B trans complex E E + B trans complex E B B

14 C2H5OH:Ar + C6H6:Ar Concentration Study
1:100 – 1:800 S:M ratios; O−H stretching region trans complex 20 K co-depositions higher complex 1:100 1:200 1:400 1:800 1:1600 monomer trans complex 20 K co-depositions + 35 K anneal higher complexes 1:100 1:200 1:400 1:800 1:1600 monomer

15 C2H5OH:Ar + C6H6:Ar Isotopic Spectra
C2H5OH/C2D5OD; O−H/O−D stretching region 1:800 C2H5OH + 1:800 C6H6 1:800 C2D5OD + 1:800 C6H6 trans complex 20 K trans complex 20 K E + B E + B E E B B trans complex 35 K trans complex 35 K E + B E + B E E B B

16 Nitrogen Matrix Spectra
Complex Frequencies & Shifts (cm-1) B3LYP/aug-cc-pVDZ; freqs scaled by MP2/aug-cc-pVDZ; freqs scaled by Nitrogen Matrix Spectra Conformer Monomer Complex Shift experiment trans 3652.8 3603.4 −49.4 B3LYP/aDZ trans ecl 3717.4 3684.2 −33.2 MP2/aDZ 3682.1 3634.5 −47.6 gauche 3648.9 3599.5 gauche ecl 3699.1 3666.8 −32.3 3670.9 3615.1 −55.8 Argon Matrix Spectra Conformer Monomer Complex Shift experiment trans 3655.6 3612.3 −43.3 B3LYP/aDZ trans ecl 3717.4 3684.2 −33.2 MP2/aDZ 3682.1 3634.5 −47.6

17 Summary Calculations predict weakly bound complexes for trans and gauche C2H5OH with C6H6 B3LYP ≈ 5.1 – 5.3 kJ/mol & MP2 ≈ 16.3 – 17.6 kJ/mol O-H freq shifts ≈ – 30 cm-1(B3LYP) & ≈ – 50 cm-1 (MP2) Co-deposition of C2H5OH (& C2D5OD) with C6H6 in N2 & Ar matrices performed N2 Matrix O-H peaks observed for gauche & trans complexes Ar Matrix O-H peaks observed for only trans complex MP2 freq shifts compare more favorably with expt


Download ppt "Observation of Trans-Ethanol and"

Similar presentations


Ads by Google