Presentation is loading. Please wait.

Presentation is loading. Please wait.

DCM for evoked responses

Similar presentations


Presentation on theme: "DCM for evoked responses"— Presentation transcript:

1 DCM for evoked responses
Ryszard Auksztulewicz SPM for M/EEG course, 2016

2 ? Does network XYZ explain my data better than network XY? Which XYZ connectivity structure best explains my data? Are X & Y linked in a bottom-up, top-down or recurrent fashion? Is my effect driven by extrinsic or intrinsic connections? Which neural populations are affected by contextual factors? Which connections determine observed frequency coupling? How changing a connection/parameter would influence data? context input

3 The DCM analysis pathway
Build model(s) Fit your model parameters to the data Pick the best model Make an inference (conclusion) Collect data

4 The DCM analysis pathway
Build model(s) Fit your model parameters to the data Pick the best model Make an inference (conclusion) Collect data

5 Phillips et al., 2016

6 Data for DCM for ERPs / ERFs
Downsample Filter (e.g. 1-40Hz) Epoch Remove artefacts Average Per subject Grand average Plausible sources Literature / a priori Dipole fitting / 3D source reconstruction Data should be processed like this to leave ERPs for each condition

7 The DCM analysis pathway
Build model(s) Fit your model parameters to the data Pick the best model Make an inference (conclusion) Collect data

8 The DCM analysis pathway
‘Hardwired’ model features Build model(s) Fit your model parameters to the data Pick the best model Make an inference (conclusion) Collect data

9 Models I’m going to talk about these models here

10 Neuronal (source) model
Kiebel et al., 2008

11 NEURAL MASS MODEL L2/3 Inhib Inter Spiny Stell L4 Pyr L5/6 spm_fx_erp

12 Canonical Microcircuit Model (‘CMC’)
Bastos et al. (2012) Pinotsis et al. (2012)

13 CANONICAL MICROCIRCUIT
NEURAL MASS MODEL CANONICAL MICROCIRCUIT Pyr L2/3 Inhib Inter xv Spiny Stell Spiny Stell mv L4 Inhib Inter Pyr Pyr L5/6 spm_fx_erp spm_fx_cmc

14 Canonical Microcircuit Model (‘CMC’)
Supra- granular Layer Granular Layer Infra-granular Layer

15 Canonical Microcircuit Model (‘CMC’)
Inhibitory Interneurons Superficial Pyramidal Cells Supra-granular Layer Spiny Stellate Cells Granular Layer Infra-granular Layer Deep Pyramidal Cells Pinotsis et al., 2012

16 Canonical Microcircuit Model (‘CMC’)
Inhibitory Interneurons Superficial Pyramidal Cells Supra-granular Layer Spiny Stellate Cells Granular Layer Infra-granular Layer Deep Pyramidal Cells Pinotsis et al., 2012

17 Canonical Microcircuit Model (‘CMC’)
Inhibitory Interneurons Superficial Pyramidal Cells Supra-granular Layer Spiny Stellate Cells Granular Layer Infra-granular Layer Deep Pyramidal Cells Pinotsis et al., 2012

18 Canonical Microcircuit Model (‘CMC’)
Inhibitory Interneurons Superficial Pyramidal Cells Supra-granular Layer Spiny Stellate Cells Granular Layer Infra-granular Layer Deep Pyramidal Cells Pinotsis et al., 2012

19 Canonical Microcircuit Model (‘CMC’)
Inhibitory Interneurons Superficial Pyramidal Cells Supra-granular Layer Spiny Stellate Cells Granular Layer Infra-granular Layer Deep Pyramidal Cells Pinotsis et al., 2012

20 Canonical Microcircuit Model (‘CMC’)
Inhibitory Interneurons Superficial Pyramidal Cells Supra-granular Layer Spiny Stellate Cells Granular Layer Infra-granular Layer Deep Pyramidal Cells Pinotsis et al., 2012

21 Canonical Microcircuit Model (‘CMC’)
Inhibitory Interneurons Superficial Pyramidal Cells Supra-granular Layer Spiny Stellate Cells Granular Layer Infra-granular Layer Deep Pyramidal Cells Pinotsis et al., 2012

22 Canonical Microcircuit Model (‘CMC’)
Inhibitory Interneurons Superficial Pyramidal Cells Supra-granular Layer Spiny Stellate Cells Granular Layer Infra-granular Layer Deep Pyramidal Cells Pinotsis et al., 2012

23 Canonical Microcircuit Model (‘CMC’)
Voltage change rate: f(current) Current change rate: f(voltage,current) Pinotsis et al., 2012

24 Canonical Microcircuit Model (‘CMC’)
Voltage change rate: f(current) Current change rate: f(voltage,current) H, τ Kernels: pre-synaptic inputs -> post-synaptic membrane potentials [ H: max PSP; τ: rate constant ] S Sigmoid operator: PSP -> firing rate David et al., 2006; Pinotsis et al., 2012

25 Canonical Microcircuit Model (‘CMC’)
Supra-granular Layer Granular Layer Infra-granular Layer Pinotsis et al., 2012

26 The DCM analysis pathway
‘Hardwired’ model features Build model(s) Fit your model parameters to the data Pick the best model Make an inference (conclusion) Collect data

27 5 4 3 2 1

28 5 4 3 2 1 Input

29 5 4 3 2 1 Input

30 5 4 3 2 1 Input

31 5 4 3 2 1 Input

32 Factor 1 5 4 3 2 1 Input

33 Factor 1 Factor 2 5 4 3 2 1 Input

34 The DCM analysis pathway
Fixed parameters Build model(s) Fit your model parameters to the data Pick the best model Make an inference (conclusion) Collect data

35 Fitting DCMs to data In theory this should take 1s of work and 45mins drinking coffee.

36 Fitting DCMs to data H. Brown
You should end up with something like this. This is nicely fitted data because….. H. Brown

37 Fitting DCMs to data H. Brown
But sometimes this happens. This is poorly fitted data because… H. Brown

38 Fitting DCMs to data Check your data H. Brown
Do you have a clear ERP which differs between conditions? If not, check your artefact rejection and other sources of noise in the data. H. Brown

39 Fitting DCMs to data Check your data Check your sources H. Brown
Are they in locations of greatest source activity as identified by source localisation? Does the fit improve a lot if you allow the source locatiosn to be optimised? H. Brown

40 Fitting DCMs to data Check your data Check your sources
Model 1 V4 IPL A19 OFC Fitting DCMs to data Check your data Check your sources Check your model e.g. does the model have enough explanatory power or enough areas? What about the input? IPL IPL V4 V4 Model 2 H. Brown

41 Fitting DCMs to data Check your data Check your sources
Check your model Re-run model fitting Sometimes you know the model is sound but a few datasets are being stubborn. Might be due to the free energy landscape. If you’re fitting individual subject data, try re-initialising with the posteriors form a previous subject. H. Brown

42 The DCM analysis pathway
Fixed parameters Build model(s) Fit your model parameters to the data Pick the best model Make an inference (conclusion) Collect data

43 Phillips et al., 2016

44 ? Does network XYZ explain my data better than network XY? Which XYZ connectivity structure best explains my data? Are X & Y linked in a bottom-up, top-down or recurrent fashion? Is my effect driven by extrinsic or intrinsic connections? Which connections/populations are affected by contextual factors? context input

45 Example #1: Architecture of MMN
Garrido et al., 2008

46 Example #2: Role of feedback connections
Garrido et al., 2007

47 Example #3: Group differences
Boly et al., 2011

48 Example #4: Factorial design & CMC
Attention cf. Feldman & Friston, 2010 FORWARD PREDICTION ERROR L2/3 p x x xx L4 s m mx A1 STG L5/6 BACKWARD PREDICTIONS Bastos et al., Neuron 2012 Auksztulewicz & Friston, 2015

49 2x2 design: Attended vs unattended Standard vs deviant (Only trials with 2 tones) N=20 Auksztulewicz & Friston, 2015

50 Attention Expectation
Flexible factorial design Thresholded at p<.005 peak-level Corrected at a cluster-level pFWE<.05 Auksztulewicz & Friston, 2015 Contrast estimate A1E1 A1E0 A0E1 A0E0

51 Auksztulewicz & Friston, 2015
Flexible factorial design Thresholded at p<.005 peak-level Corrected at a cluster-level pFWE<.05 Contrast estimate A1E1 A1E0 A0E1 A0E0 Auksztulewicz & Friston, 2015

52 Connectivity structure
input input Extrinsic modulation input input Intrinsic modulation SP Inh Int input input

53 xv mv xx mx Superficial pyramidal cells:
signal prediction errors to higher areas Brown & Friston, 2010 Feldman & Friston, 2013 Inhibitory interneurons: prediction errors of hidden states Bastos et al., 2012 attentional effects of ACh -> depression of I.I. activity Xiang et al., 1998 Buia and Tiesinga, 2006 attentional gamma spike-LFP phase locking Vinck et al., 2013 xv mv xx mx SPM CMC

54

55 Auksztulewicz & Friston, 2015

56 Motivate your assumptions!
Rubbish data Perfect model Rubbish results Perfect data Rubbish model Rubbish results

57 Thank you! Karl Friston Gareth Barnes Andre Bastos Harriet Brown
Jean Daunizeau Marta Garrido Stefan Kiebel Vladimir Litvak Rosalyn Moran Will Penny Dimitris Pinotsis Bernadette van Wijk


Download ppt "DCM for evoked responses"

Similar presentations


Ads by Google