Download presentation
Presentation is loading. Please wait.
1
Variable Mode High Acceptance Spectrometer
Detection and Tracking in VAMOS
2
Studies with Vamos Measures : - Bρ In dispersive mode
- angular distributions In dispersive mode - direct transfer reactions: 24Ne(d,3Heγ…), 26Ne(d,pγ…), 56Ni(d,pγ) - multi nucleon transfer/deep inelastic reactions: 48Ca + 238U - fusion reactions: 76Kr + 58Ni In non-dispersive mode - fusion reactions: 18O + 208Pb
3
VAMOS Spectrometer Schematic View
QUADRUPOLES EXOGAM BEAM Focal Plane detection at 60° DIPOLE Velocity Filter
4
VAMOS in reality
5
VAMOS Measurement (dispersive mode)
Resolution Θ 0.1° Φ 0.3° Bρ 0.5% M/q 0.5% q 1/30 M 1/200 Z 1/30 φf θf V Bρ M/q M q Z φ θ Yf Xf TOF ΔE E M/q ~ Bρ x TOF M ~ E x TOF2 Z2 ~ E x ΔE ~ ΔE/TOF2
6
Light/Fast Ion Detection Dispersive Plane
Drift Chamber X: charge distribution 2 x 64 pads (6.3x50) mm XFWHM ~200 μm Y: drift time YFWHM ~ 500 μm Ionisation Chamber 2 x 7 pads (50x50) mm 1 x 7 pads (50x 170)mm ΔEFWHM ~ 3% Plastic Detector EFWHM ~ 4% Silicon Wall
7
Light/Fast Ion Detection Dispersive Plane
Drift Chamber Plastic Detector Ionisation Chamber
8
Heavy/Slow Ion Detection
Ionisation Chamber Secondary electron Detector Se-D XFWHM ~ 1 mm YFWHM ~ 2 mm TFWHM ~ 300 ps Mylar emissive foil
9
Very heavy/slow Ion Detection – non dispersive
Secondary electron Detector Silicon Wall QQWFD Mode
10
Examples Recoil Tagging – non dispersive Deep inelastic - dispersive
40Ca at 13.7 MeV/u + natTa 238U at 5.5 MeV/u + 48Ca
11
Very-heavy systems: RT and RDT
Test experiment : Asymmetric reaction 208Pb(18O,4n)222Th
12
Energy loss versus ToF
13
Recoil Tagging
14
Recoil Decay Tagging
15
Deep Inelastic Collisions measured with VAMOS
40Ca at 13.7 MeV/u + natTa
16
Energy Loss versus Energy
Ca Ar S Si Mg Ne O C Be K Cl P Al Na F N B Li
17
Charge versus Proton Number
Ca Ar S Si Mg Ne O
18
Mass versus Mass/Charge
All charge states
19
Mass versus Mass/Charge
40Ca 41Ca 42Ca 36Ar 32S 28Si 24Mg 20Ne 160 One electron Fully stripped Two electrons
20
Mass Peux faire en redressant
Possible d’améliorer avec mesure de temps de vol
21
Deep Inelastic Collisions (inverse kinematics)
238U at 5.5 MeV/u + 48Ca
22
Online spectra of 50Ca 50Ca 49Ca 48Ca
Tres preliminaire, calib pas faite encore ONLINE
23
Continuation - Experimentally explore the limits
of the existing setup to fully identify the nuclei within the M, Z, Q and E coordinates - Recoil Decay Tagging To be obtained by - Short runs with the deep inelastic reactions induced by Ni, Ge, Kr … beams Include ΔE measurement of nuclei stopped in gas Improve the ToF resolution that limits the M/Q measurement Tof : detecteur start (par exemple apres QQ) Resolution spectro = 1/1000. Limite actuelle = detection
24
How to improve ? M/q ~ Bρ x TOF M ~ E x TOF2 Z2 ~ E x ΔE ~ ΔE/TOF2
Bρ : spectrometer resolution ~1/1000 Improve algorithm (easy) ToF : ~ 1/100 (versus HF) « start » detector, e.g. in the W.F. E : Plastic Silicon ΔE : silicon detector ?
25
The MUSETT project MUr de Silicium pour l’Etude des
Transfermium par Tagging (Silicon Wall for Transfermium Studies using Tagging) Goals: Detection of very-heavy/slow ions for RDT Improved detection for light ions (transfer, deep inelastic)
26
MUSETT Configurations
Musett + SeD RDT Z,A identification (transfer, deep inelastic) Musett + CHIO CHIO+SeD 40x10cm 4x128x128 strips
27
Specifications Granularity (Decay tagging, ray tracing)
Size (Focal plane coverage) Energy resolution (Alpha spectroscopy, identification) Window-less (Slow and heavy ions) Low noise and compact electronics (ASICs) Fast readout
28
MUSETT : Cost and planning
2006 : detector prototype; tests with existing electronics : full setup (4 det.) with ASICs electronics Cost : ~220 k€
29
Summary Dispersive mode : transfer, deep-inelastic
SeD, Drift chamber, CHIO, SiWall Non dispersive : very-heavy elements Asymmetric reactions, SeD, SiWal Developments : Improved ToF (dispersive Mode) MUSETT : RDT; A,Z,Q identification
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.