Download presentation
Presentation is loading. Please wait.
Published byIzabella Lucy Modified over 10 years ago
2
Importance of the LNA
3
Importance of the LNA Friis’ Formula
4
Importance of the LNA X Friis’ Formula Digital Electronics CMOS LNA
Low Cost High Integration Integration With Digital IC X Larger Parasitic Capisitance
5
Importance of the LNA X Friis’ Formula RF Hexagon
Digital Electronics CMOS LNA Low Cost High Integration Integration With Digital IC X Larger Parasitic Capisitance
6
Why Inductive Degenerated LNA?
2-Port Noise Theory
7
Why Inductive Degenerated LNA?
2-Port Noise Theory
8
CMOS small signal equivalent
Why Inductive Degenerated LNA? 2-Port Noise Theory CMOS small signal equivalent
9
Why Inductive Degenerated LNA?
2-Port Noise Theory CMOS small signal equivalent Thermal Noise Contribution
10
Why Inductive Degenerated LNA?
2-Port Noise Theory CMOS small signal equivalent Thermal Noise Contribution
11
Why Inductive Degenerated LNA?
2-Port Noise Theory CMOS small signal equivalent Thermal Noise Contribution Power Matching X
12
Inductive Source Degeneration
Inductive Degenerated LNA Inductive Source Degeneration Input Power Matching Bond Wire Inductance
13
Inductive Degenerated LNA
Inductive Source Degeneration Small Signal Equivalent Input Power Matching Bond Wire Inductance
14
Inductive Degenerated LNA
Inductive Source Degeneration Small Signal Equivalent Input Power Matching Bond Wire Inductance Power Matching
15
Inductive Degenerated LNA
Inductive Source Degeneration Small Signal Equivalent Input Power Matching Bond Wire Inductance Power Matching
16
Inductive Degenerated LNA
Inductive Source Degeneration Small Signal Equivalent Input Power Matching Bond Wire Inductance Power Matching
17
Basic Equation of MOS Drain
Definitions Basic Equation of MOS Drain
18
Basic Equation of MOS Drain
Definitions Basic Equation of MOS Drain
19
Basic Equation of MOS Drain
Definitions Basic Equation of MOS Drain
20
Basic Equation of MOS Drain
Definitions Basic Equation of MOS Drain
21
Basic Equation of MOS Drain
Definitions Basic Equation of MOS Drain Long Channel Short Channel
22
Inductive Specified Technique
1st step: Setting the value of Ls
23
Inductive Specified Technique
1st step: Setting the value of Ls 2nd step: Finding the value of ωt.Ls From Impendance Matching:
24
Inductive Specified Technique
1st step: Setting the value of Ls 2nd step: Finding the value of ωt.Ls From Impendance Matching: 3rd step: Finding the optimum Qs
25
Inductive Specified Technique
1st step: Setting the value of Ls 2nd step: Finding the value of ωt.Ls From Impendance Matching: 3rd step: Finding the optimum Qs 4th step: Finding the value of Lg From Impendance Matching:
26
Inductive Specified Technique
1st step: Setting the value of Ls 2nd step: Finding the value of ωt.Ls From Impendance Matching: 3rd step: Finding the optimum Qs 4th step: Finding the value of Lg From Impendance Matching: 5th step: Finding the optimum Cgs From Impendance Matching:
27
Inductive Specified Technique
6th step: Finding the optimum device’s width Wopt,Ls
28
Inductive Specified Technique
6th step: Finding the optimum device’s width Wopt,Ls 7th step: Finding the optimum device’s transconductance gm.opt.Ls From Impendance Matching:
29
! Inductive Specified Technique
6th step: Finding the optimum device’s width Wopt,Ls 7th step: Finding the optimum device’s transconductance gm.opt.Ls From Impendance Matching: 8th step: Finding the optimum ρ and Vod !
30
! Inductive Specified Technique
6th step: Finding the optimum device’s width Wopt,Ls 7th step: Finding the optimum device’s transconductance gm.opt.Ls From Impendance Matching: 8th step: Finding the optimum ρ and Vod ! 9th step: Finding the current consumption ID.Ls
31
Current Specified Technique
1st step: Setting the current consumption ID
32
Current Specified Technique
1st step: Setting the current consumption ID 2nd step: Finding the optimum ρ and Vod
33
Current Specified Technique
1st step: Setting the current consumption ID 2nd step: Finding the optimum ρ and Vod 3nd step: Finding the optimum Qs From 2nd Step:
34
Current Specified Technique
1st step: Setting the current consumption ID 2nd step: Finding the optimum ρ and Vod 3nd step: Finding the optimum Qs From 2nd Step: 4th step: Finding the optimum device width Wopt,I From 3rd Step & Impendance Matching:
35
Current Specified Technique
1st step: Setting the current consumption ID 2nd step: Finding the optimum ρ and Vod 3nd step: Finding the optimum Qs From 2nd Step: 4th step: Finding the optimum device width Wopt,I From 3rd Step & Impendance Matching: 5nd step: Finding the value of ωt.I From 2nd Step:
36
Current Specified Technique
6th step: Finding the optimum device transconductance gm.opt.I From 2nd , 3rd Step & Impendance Matching:
37
Current Specified Technique
6th step: Finding the optimum device transconductance gm.opt.I From 2nd , 3rd Step & Impendance Matching: 7th step: Finding the optimum Cgs From 5th , 6th Step :
38
Current Specified Technique
6th step: Finding the optimum device transconductance gm.opt.I From 2nd , 3rd Step & Impendance Matching: 7th step: Finding the optimum Cgs From 5th , 6th Step : 8th step: Finding the optimum Ls From 6th , 7th Step & Impendance Matching:
39
Current Specified Technique
6th step: Finding the optimum device transconductance gm.opt.I From 2nd , 3rd Step & Impendance Matching: 7th step: Finding the optimum Cgs From 5th , 6th Step : 8th step: Finding the optimum Ls From 6th , 7th Step & Impendance Matching: 9th step: Finding the optimum Lg From 6th , 7th Step & Impendance Matching:
40
Comparison Results Inductive Specified Technique
41
Comparison Results Inductive Specified Technique
42
Comparison Results Inductive Specified Technique Parameters:
43
Comparison Results Inductive Specified Technique @ 1.6 GHz ID= 1.7mA
Vod=120mV
44
Comparison Results Inductive Specified Technique @ 2.5 GHz ID= 1.1mA
Vod=120mV
45
Comparison Results Inductive Specified Technique @ 5.5 GHz ID= 0.5mA
Vod=120mV
46
Comparison Results Inductive Specified Technique Vod ≤ 150 mV
47
Comparison Results Inductive Specified Technique @ 1.6 GHz ID= 2.4mA
Vod=138mV
48
Comparison Results Inductive Specified Technique @ 2.5 GHz ID= 1.5mA
Vod=138mV
49
Comparison Results Inductive Specified Technique @ 5.5 GHz ID= 0.7mA
Vod=138mV
50
Comparison Results Inductive Specified Technique Vod ≤ 150 mV
51
Comparison Results Inductive Specified Technique @ 1.6 GHz ID= 3.2mA
Vod=162mV
52
Comparison Results Inductive Specified Technique @ 2.5 GHz ID= 2.1mA
Vod=162mV
53
Comparison Results Inductive Specified Technique @ 5.5 GHz ID= 0.7mA
Vod=162mV
54
Comparison Results Inductive Specified Technique Vod ≥ 150 mV
55
Comparison Results Inductive Specified Technique Vod ≥ 150 mV
56
Comparison Results Inductive Specified Technique Vod ≥ 150 mV
57
Comparison Results Inductive Specified Technique Vod ≥ 150 mV
58
Comparison Results Inductive Specified Technique Vod ≥ 150 mV
59
Comparison Results Inductive Specified Technique Vod ≥ 150 mV
60
Comparison Results Inductive Specified Technique Ls = 1.2nH ID= 0.9mA
NFmin= 6.1dB
61
Comparison Results Inductive Specified Technique Ls = 1nH ID= 1.4mA
NFmin= 5.6dB
62
Comparison Results Inductive Specified Technique Ls = 0.8nH ID= 2.2mA
NFmin= 5dB
63
Comparison Results Inductive Specified Technique Ls = 0.6nH ID= 4mA
NFmin= 4dB
64
Comparison Results Inductive Specified Technique ID NFmin
65
Comparison Results Inductive Specified Technique ID NFmin
66
Comparison Results Inductive Specified Technique ID NFmin
67
Comparison Results Inductive Specified Technique ID NFmin L LS ID
68
Comparison Results Current Specified Technique
69
Comparison Results Current Specified Technique
70
Comparison Results Current Specified Technique Parameters:
71
Comparison Results Current Specified Technique @ 1.6 GHz LS=3.1nH
Vod=60mV
72
Comparison Results Current Specified Technique @ 2.5 GHz LS=2.5nH
Vod=76mV
73
Comparison Results Current Specified Technique @ 5.5 GHz LS=1.7nH
Vod=112mV
74
Comparison Results Current Specified Technique @ 1.6 GHz LS=2.2nH
Vod=85mV
75
Comparison Results Current Specified Technique @ 2.5 GHz LS=1.7nH
Vod=107mV
76
Comparison Results Current Specified Technique @ 5.5 GHz LS=1.2nH
Vod=158mV
77
Comparison Results Current Specified Technique
78
Comparison Results Current Specified Technique Vod,opt ≥ 150mV
3nH ≥ LS ≥ 0.5nH
79
Comparison Results Current Specified Technique ID NFmin
80
Comparison Results Current Specified Technique ID NFmin
81
Comparison Results Current Specified Technique ID NFmin L LS ID
82
Conclusion Inductive Specified Technique Ls ωt.Ls Qs Lg Cgs Wopt,Ls
gm.opt.Ls ρ ID.Ls
83
Conclusion Inductive Specified Technique Ls ωt.Ls Qs Lg Cgs Wopt,Ls
gm.opt.Ls ρ ID.Ls Current Specified Technique ID p Qs Wopt,I ωt.I gm.opt.I Cgs LS,opt,I Lg
84
Conclusion Inductive Specified Technique Ls ωt.Ls Qs Lg Cgs Wopt,Ls
gm.opt.Ls ρ ID.Ls Current Specified Technique ID p Qs Wopt,I ωt.I gm.opt.I Cgs LS,opt,I Lg Same Results for Same Numbers from the two techniques
85
Conclusion X Inductive Specified Technique Ls ωt.Ls Qs Lg Cgs Wopt,Ls
gm.opt.Ls ρ ID.Ls Current Specified Technique ID p Qs Wopt,I ωt.I gm.opt.I Cgs LS,opt,I Lg Same Results for Same Numbers from the two techniques X Noise minimization for different values than those for Power Matching
86
Conclusion X Future Work: Inductive Specified Technique Ls ωt.Ls Qs Lg
Cgs Wopt,Ls gm.opt.Ls ρ ID.Ls Current Specified Technique ID p Qs Wopt,I ωt.I gm.opt.I Cgs LS,opt,I Lg Same Results for Same Numbers from the two techniques X Noise minimization for different values than those for Power Matching Future Work: Work for Linearity Include all the theory in a toolkit for giving Guidelines
87
References [1] Hashemi, H. and Hajimiri A., “Concurrent multiband low-noise amplifiers-theory, design and applications,” IEEE Trans. Mircrowave theory and techniques,52(1), pp.288–301, 2002. [2] Lee, T.H. The design of CMOS Radio Frequency Integrated Circuits., Cambridge Univ. Press, Cambridge, 1998. [3] Voinigescu, S. P., Maliepaard, M.C., Showell, J.L., Babcock, G.E., Marchesan, D., Schroter, M., Schvan, P. and Harame, D.L. “A scalable high-frequency noise model for bipolar transistors with application optimal transistor sizing for low-noise amplifier design,” IEEE J. Solid-State Circuits,32(9), pp.1430–1439, 1997. [4] Shaeffer, D. K. and Lee, T.H., “A 1.5 V, 1.5 GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits,32(5),745–758,1997. [5] Andreani P. Sjöland H., “Noise optimization of an inductively degenerated CMOS low noise amplifier,” IEEE Trans. Circuits Syst., 48, pp.835–841, Sept
88
Thank you for you attention !
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.