Download presentation
Presentation is loading. Please wait.
1
Stars
2
What is a star? A star is a ball of plasma held together by its own gravity that heat and light the planets in a system. Nuclear reactions occur in stars Energy from the nuclear reactions is released as electromagnetic radiation
3
Characteristics of Stars
DISTANCE Measured in light-years The distance which a ray of light would travel in one year About 6,000,000,000,000 (6 trillion) miles 186,000 miles per second
4
Characteristics of Stars
Magnitude (brightness) A measure of brightness of celestial objects Smaller values represent brighter objects than larger values Apparent magnitude How bright a star appears to be from Earth Absolute magnitude (luminosity) How bright a star actually is
5
Characteristics of Stars
Temperature & Color The color of a star indicates the Temperature of the star Stars are classified by Temperature Decreasing T (bright to dim) The Sun is considered a low temperature star.
6
Hertzsprung-Russell Diagram
7
Main Sequence Stars A major grouping of stars that forms a narrow band from the upper left to the lower right when plotted according to luminosity and surface temperature on the Hertzsprung-Russell diagram
8
Types of Stars Classification
Temperature Color O 20, ,000 K Blue B 10,000 – 30,000 K Blue-white A 7,500 – 10,000 K White F 6,000 – 7,500 K Yellow-white G 5,000 – 6,000 K Yellow K 3,500 – 5,000 K Orange M 2,000 – 3,500 K Red
9
Life Cycle of Stars
10
Life Cycle of Stars Begin their lives as clouds of dust and gas called nebulae Gravity may cause the nebula to contract Matter in the gas cloud will begin to condense into a dense region called a protostar The protostar continues to condense, it heats up. Eventually, it reaches a critical mass and nuclear fusion begins. Begins the main sequence phase of the star Most of its life is in this phase
11
Life Cycle of Stars Life span of a star depends on its size.
Very large, massive stars burn their fuel much faster than smaller stars Their main sequence may last only a few hundred thousand years Smaller stars will live on for billions of years because they burn their fuel much more slowly Eventually, the star's fuel will begin to run out.
12
Life Cycle of Stars Average stars will expand into what is known as a red giant Massive stars will become red supergiants These phases will last until the star exhausts its remaining fuel At this point the star will collapse
13
Life Cycle of Stars Most average stars will blow away their outer atmospheres to form a planetary nebula Their cores will remain behind and burn as a white dwarf until they cool down What will be left is a dark ball of matter known as a black dwarf
14
Life Cycle of Stars If the star is massive enough (red supergiant), the collapse will trigger a violent explosion known as a supernova If the remaining mass of the star is about 1.4 times that of our Sun, the core is unable to support itself and it will collapse further to become a neutron star
15
Life Cycle of Stars The matter inside the star will be compressed so tightly that its atoms are compacted into a dense shell of neutrons. If the remaining mass of the star is more than about three times that of the Sun, it will collapse so completely that it will literally disappear from the universe. What is left behind is an intense region of gravity called a black hole
16
Life Cycle of Stars
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.