Download presentation
Presentation is loading. Please wait.
Published byMareke Koenig Modified over 6 years ago
1
Order in which subshells are filled with electrons
2p 3p 4p 5p 6p 3d 4d 5d 6d 4f 5f 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d …
2
Sublevels 4f 4d 4p 4s n = 4 3d 3p 3s n = 3 Energy 2p 2s n = 2 1s n = 1
The energy of an electron is determined by its average distance from the nucleus. Each atomic orbital with a given set of quantum numbers has a particular energy associated with it, the orbital energy. In atoms or ions that contain only a single electron, all orbitals with the same value of n have the same energy (they are degenerate). Energies of the principal shells increase smoothly as n increases. An atom or ion with the electron(s) in the lowest-energy orbital(s) is said to be in the ground state; an atom or ion in which one or more electrons occupy higher-energy orbitals is said to be in the excited state. 3s 3p 2p 2s n = 2 3s 2p 2s 2p 2s 1s 1s 1s n = 1
3
Sublevels 4f 4d 4p 4s n = 4 3d 3p 3s n = 3 Energy 2p 2s n = 2 1s n = 1
1s22s22p63s23p64s23d104p65s24d10… Electron configuration of an element is the arrangement of its electrons in its atomic orbitals One can obtain and explain a great deal of the chemistry of the element by knowing its electron configuration 2p 2s n = 2 1s n = 1
4
Filling Rules for Electron Orbitals
Aufbau Principle: Electrons are added one at a time to the lowest energy orbitals available until all the electrons of the atom have been accounted for. Pauli Exclusion Principle: An orbital can hold a maximum of two electrons. To occupy the same orbital, two electrons must spin in opposite directions. The Aufbau principle – Used to construct the periodic table – First, determine the number of electrons in the atoms – Then add electrons one at a time to the lowest-energy orbitals available without violating the Pauli principle – Each of the orbitals can hold two electrons, one with spin up , which is written first, and one with spin down – A filled orbital is indicated by , in which the electron spins are paired – The electron configuration is written in an abbreviated form, in which the occupied orbitals are identified by their principal quantum n and their value of l (s, p, d, or f), with the number of electrons in the subshell indicated by a superscript Hund’s Rule: Electrons occupy equal-energy orbitals so that a maximum number of unpaired electrons results. *Aufbau is German for “building up”
5
General Rules Pauli Exclusion Principle
Each orbital can hold TWO electrons with opposite spins. Wolfgang Pauli Courtesy Christy Johannesson
6
General Rules Aufbau Principle
Electrons fill the lowest energy orbitals first. “Lazy Tenant Rule” 6d 5f 7s 6d 5f 6p 7s 5d 4f 6p 6s 5d 5p 4f 6s 4d 5s 5p 4d 4p 5s 3d 4s 4p 3d 3p 4s Energy 3p 3s 3s 2p 2s 2p 2s 1s 1s Courtesy Christy Johannesson
7
General Rules WRONG RIGHT Hund’s Rule
Within a sublevel, place one electron per orbital before pairing them. “Empty Bus Seat Rule” WRONG RIGHT Courtesy Christy Johannesson
8
1s2 2s2 2p4 O Notation 1s 2s 2p 8e- O Orbital Diagram
8 Notation Orbital Diagram 1s 2s 2p O 8e- Electron Configuration 1s2 2s2 2p4 Courtesy Christy Johannesson
9
H He Li C N Al Ar F Fe La Energy Level Diagram Bohr Model
6s p d f Bohr Model 5s p d 4s p d Arbitrary Energy Scale 3s p N 2s p 1s Electron Configuration NUCLEUS H He Li C N Al Ar F Fe La CLICK ON ELEMENT TO FILL IN CHARTS
10
Hydrogen H = 1s1 H He Li C N Al Ar F Fe La Energy Level Diagram
6s p d f Bohr Model 5s p d 4s p d Arbitrary Energy Scale 3s p N 2s p 1s Electron Configuration NUCLEUS H = 1s1 H He Li C N Al Ar F Fe La CLICK ON ELEMENT TO FILL IN CHARTS
11
Helium He = 1s2 H He Li C N Al Ar F Fe La Energy Level Diagram
6s p d f Bohr Model 5s p d 4s p d Arbitrary Energy Scale 3s p N 2s p 1s Electron Configuration NUCLEUS He = 1s2 H He Li C N Al Ar F Fe La CLICK ON ELEMENT TO FILL IN CHARTS
12
Carbon C = 1s22s22p2 H He Li C N Al Ar F Fe La Energy Level Diagram
6s p d f Bohr Model 5s p d 4s p d Arbitrary Energy Scale 3s p N 2s p 1s Electron Configuration NUCLEUS C = 1s22s22p2 H He Li C N Al Ar F Fe La CLICK ON ELEMENT TO FILL IN CHARTS
13
Nitrogen N = 1s22s22p3 H He Li C N Al Ar F Fe La Energy Level Diagram
6s p d f Bohr Model 5s p d 4s p d Arbitrary Energy Scale 3s p N Hund’s Rule “maximum number of unpaired orbitals”. 2s p 1s Electron Configuration NUCLEUS N = 1s22s22p3 H He Li C N Al Ar F Fe La CLICK ON ELEMENT TO FILL IN CHARTS
14
Fluorine F = 1s22s22p5 H He Li C N Al Ar F Fe La Energy Level Diagram
6s p d f Bohr Model 5s p d 4s p d Arbitrary Energy Scale 3s p N 2s p 1s Electron Configuration NUCLEUS F = 1s22s22p5 H He Li C N Al Ar F Fe La CLICK ON ELEMENT TO FILL IN CHARTS
15
Iron H He Li C N Al Ar F Fe La Energy Level Diagram Bohr Model
6s p d f Bohr Model 5s p d N 4s p d Arbitrary Energy Scale 3s p 2s p 1s Electron Configuration NUCLEUS Fe = 1s22s22p63s23p64s23d6 H He Li C N Al Ar F Fe La CLICK ON ELEMENT TO FILL IN CHARTS
16
Shorthand Configuration
neon's electron configuration (1s22s22p6) B third energy level [Ne] 3s1 one electron in the s orbital C D orbital shape Valence electrons – Tedious to keep copying the configurations of the filled inner subshells – Simplify the notation by using a bracketed noble gas symbol to represent the configuration of the noble gas from the preceding row – Example: [Ne] represents the 1s22s22p6 electron configuration of neon (Z = 10) so the electron configuration of sodium (Z = 11), which is 1s22s22p63s1, is written as [Ne]3s1 – Electrons in filled inner orbitals are closer and are more tightly bound to the nucleus and are rarely involved in chemical reactions Na = [1s22s22p6] 3s1 electron configuration
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.