Download presentation
Presentation is loading. Please wait.
Published byGabriel Brian Patrick Modified over 6 years ago
1
Trig Ratios C 5 2 A M Don’t forget the Pythagorean Theorem
Be sure to discuss if C = 20, then sin C would equal ?
2
Ex: 1. Figure out which ratio to use. Find x
Ex: 1 Figure out which ratio to use. Find x. Round to the nearest tenth. O 20 m 40 m A x Shrink yourself down and stand where the angle is. Identify the given sides as H, O, or A. What trig ratio is this?
3
Ex: 6. Figure out which ratio to use. Find x
Ex: 6 Figure out which ratio to use. Find x. Round to the nearest tenth. 20 m x A O
4
Ex: 2. Figure out which ratio to use. Find x
Ex: 2 Figure out which ratio to use. Find x. Round to the nearest tenth. O H 15 m 50 m x Shrink yourself down and stand where the angle is. Identify the given sides as H, O, or A. What trig ratio is this?
5
Ex: 7 Find the missing side. Round to the nearest tenth.
80 ft x O A
6
Ex. 3: Find . Round to the nearest degree.
17.2 9 A
7
Ex. 4: Find . Round to the nearest degree.
7 23 H
8
Ex. 5: Find . Round to the nearest degree.
200 O 400 H
9
Ex: 8 Find the missing side. Round to the nearest tenth.
10
Ex: 9 Find the missing side. Round to the nearest tenth.
20 ft x A
11
Solving Word Problems Use the 3 ratios – sin, cos and tan to solve application problems. Choose the easiest ratio(s) to use based on what information you are given in the problem.
12
Draw a Picture When solving math problems, it can be very helpful to draw a picture of the situation if none is given. Here is an example. Find the missing sides and angles for Triangle FRY. Given that angle Y is the right angle, f = 68, and y = 88. 68 88 r The picture helps to visualize what we know and what we want to find!
13
1. From a point 80m from the base of a tower, the angle of elevation is 28˚. How tall is the tower?
x 28˚ 80 Using the 28˚ angle as a reference, we know opposite and adjacent sides. Use tan tan 28˚ = 80 (tan 28˚) = x 80 (.5317) = x x ≈ 42.5 About 43 m
14
2. A ladder that is 20 ft is leaning against the side of a building
2. A ladder that is 20 ft is leaning against the side of a building. If the angle formed between the ladder and ground is 75˚, how far will Coach Jarvis have to crawl to get to the front door when he falls off the ladder (assuming he falls to the base of the ladder)? 20 building ladder 75˚ x Using the 75˚ angle as a reference, we know hypotenuse and adjacent side. Use cos cos 75˚ = 20 (cos 75˚) = x 20 (.2588) = x x ≈ 5.2 About 5 ft.
15
3. When the sun is 62˚ above the horizon, a building casts a shadow 18m long. How tall is the building? x 62˚ 18 shadow Using the 62˚ angle as a reference, we know opposite and adjacent side. Use tan tan 62˚ = 18 (tan 62˚) = x 18 (1.8807) = x x ≈ 33.9 About 34 m
16
4. A kite is flying at an angle of elevation of about 55˚
4. A kite is flying at an angle of elevation of about 55˚. Ignoring the sag in the string, find the height of the kite if 85m of string have been let out. kite 85 x string 55˚ Using the 55˚ angle as a reference, we know hypotenuse and opposite side. Use sin sin 55˚ = 85 (sin 55˚) = x 85 (.8192) = x x ≈ 69.6 About 70 m
17
5. A 5.50 foot person standing 10 feet from a street light casts a 24 foot shadow. What is the height of the streetlight? 5.5 x˚ 10 14 shadow tan x˚ = x° ≈ ° About 9 ft.
18
Depression and Elevation
If a person on the ground looks up to the top of a building, the angle formed between the line of sight and the horizontal is called the angle of elevation. If a person standing on the top of a building looks down at a car on the ground, the angle formed between the line of sight and the horizontal is called the angle of depression. horizontal angle of depression line of sight angle of elevation horizontal
19
6. The angle of depression from the top of a tower to a boulder on the ground is 38º. If the tower is 25m high, how far from the base of the tower is the boulder? 38º angle of depression 25 Alternate Interior Angles are congruent 38º x Using the 38˚ angle as a reference, we know opposite and adjacent side. Use tan tan 38˚ = 25/x (.7813) = 25/x X = 25/.7813 x ≈ 32.0 About 32 m
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.