Download presentation
Presentation is loading. Please wait.
Published bySudirman Hartono Modified over 6 years ago
1
XMSS Practical Hash-Based Signatures Andreas Hülsing joint work with Johannes Buchmann and Erik Dahmen | TU Darmstadt | Andreas Hülsing | 1 1. Januar 2019 |
2
Post-Quantum Signatures
Lattice, MQ, Coding Signature and/or key sizes Runtimes Secure parameters | TU Darmstadt | Andreas Hülsing | 2 1. Januar 2019 |
3
Hash-based Signature Schemes [Mer89]
Post quantum Only secure hash function Security well understood Fast Inherently forward secure | TU Darmstadt | Andreas Hülsing | 3 1. Januar 2019 |
4
Hash-based Signatures
PK SIG = (i=2, , , , , ) H OTS H H H H H H H H H H H H H H OTS OTS OTS OTS OTS OTS OTS OTS SK | TU Darmstadt | Andreas Hülsing | 4 1. Januar 2019 |
5
XMSS | TU Darmstadt | Andreas Hülsing | 5
6
Results Efficient Minimal security assumptions „Small signatures"
Forward secure Full smartcard implementation Datum | Fachbereich nn | Institut nn | Prof. nn | 6
7
New Variants of the Winternitz One Time Signature Scheme
OTS | TU Darmstadt | Andreas Hülsing | 7
8
Winternitz OTS (WOTS) [Mer89; EGM96]
= f( ) 2. Trade-off between runtime and signature size | | ~ m/log w * | | SIG = (i, , , , , ) | TU Darmstadt | Andreas Hülsing | 8 1. Januar 2019 |
9
WOTS+ [Hül13] Theorem 3.9 (informally): W-OTS+ is strongly unforgeable under chosen message attacks if F is a 2nd-preimage resistant, undetectable one-way function family In our work we showed that we can slightly change the original WOTS construction, such that it uses a function family instead of the hash function family. The resulting scheme is existentially unforgeable under chosen message attacks, if the function family is pseudorandom. This result has two implications: | TU Darmstadt | Andreas Hülsing | 9 1. Januar 2019 |
10
XMSS [BDH11] Lamport-Diffie / WOTS WOTS+ Tree construction
[DOTV08] Pseudorandom key generation bi PRG FSPRG | TU Darmstadt | Andreas Hülsing | 10
11
XMSS* in Practice | TU Darmstadt | Andreas Hülsing | 11
12
XMSS Implementations C Implementation [BDH11]
C Implementation, using OpenSSL Sign (ms) Verify (ms) Signature (bit) Public Key (bit) Secret Key (byte) Bit Security Comment XMSS-SHA-2 35.60 1.98 16,672 13,600 3,364 157 h = 20, w = 64, XMSS-AES-NI 0.52 0.07 19,616 7,328 1,684 84 w = 4 XMSS-AES 1.06 0.11 RSA 2048 3.08 0.09 ≤ 2,048 ≤ 4,096 ≤ 512 87 2013: 80 bit 84 -> 2019 87 -> 2022 157 -> 2113 Intel(R) Core(TM) i5-2520M 2.50GHz with Intel AES-NI | TU Darmstadt | Andreas Hülsing | 12 1. Januar 2019 |
13
XMSS Implementations Smartcard Implementation [HBB12]
Sign (ms) Verify (ms) Keygen (ms) Signature (byte) Public Key (byte) Secret Key (byte) Bit Sec. Comment XMSS 134 23 925,400 2,388 800 2,448 92 H = 16, w = 4 XMSS+ 106 25 5,600 3,476 544 3,760 94 RSA 2048 190 7 11,000 ≤ 256 ≤ 512 87 Tkg: - similar to RSA 2048 (11 s) - slower than ECDSA 256 (95ms). Tsign: - comparable to RSA 2048 (190ms) and ECDSA 256 (100ms). Tverify: - slightly slower than RSA 2048 (7ms) - faster than ECDSA 256 (58ms). ECDSA: PK=256~SK, Sig= 512, The security level of RSA 2048 and ECDSA 256 is 95 and 128 bits, respectively 92 -> 2028 94 -> 2031 Infineon SLE78 8KB RAM, TRNG, sym. & asym. co-processor NVM: Card million write cycles/ sector, XMSS+ < 5 million write cycles (h=20) | TU Darmstadt | Andreas Hülsing | 13 1. Januar 2019 |
14
Conclusion 23.09.2013 | TU Darmstadt | Andreas Hülsing | 14
1. Januar 2019 |
15
Conservative Security
Conclusion Fast Conservative Security Compact Forward secure | TU Darmstadt | Andreas Hülsing | 15
16
Main Drawback: State Easy Migration? Future Work Interfaces
Key Management | TU Darmstadt | Andreas Hülsing | 16
17
Thank you! Questions?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.