Download presentation
Presentation is loading. Please wait.
1
Numpy (Numerical Python)
John R. Woodward
2
Introduction Numpy Numeric Python
Fast computation with n-dimensional arrays
3
Numpy Based around one data structure ndarray n-dimensional array
Import with import numpy as np Usage is np.command(xxx)
4
ndarrays 1d: 5,67,43,76,2,21 a=np.array([5,67,43,76,2,21]) 2d: 4,5,8,4 6,3,2,1 8,6,4,3 a=np.array([4,5,8,4],[6,3,2,1],[8,6,4,3])
5
*, + import numpy as np data = randn(2, 3) print data print data * 10
print data + data [[ ] [ ]] [[ ] [ ]] [[ ] [ ]]
6
Shape and dtype OUTPUT (2L, 3L) float64 print data.shape
print data.dtype Numpy tries to infer the datatype OUTPUT (2L, 3L) float64
7
Creating ndarrays data1 = [6, 7.5, 8, 0, 1] arr1 = np.array(data1)
print arr1 Output [ ]
8
Multidimensional arrays
data2 = [[1, 2, 3, 4], [5, 6, 7, 8]] arr2 = np.array(data2) print arr2 print arr2.ndim print arr2.shape OUTPUT [[ ] [ ]] 2 (2L, 4L)
9
print arr2 print arr2.ndim print type(arr2.ndim) print arr2.shape print type(arr2.shape) print arr2.shape[0] print arr2.shape[1]
10
OUTPUT [[1 2 3 4] [5 6 7 8]] 2 <type 'int'> (2L, 4L)
<type 'tuple'> 4 print arr2 print arr2.ndim print type(arr2.ndim) print arr2.shape print type(arr2.shape) print arr2.shape[0] print arr2.shape[1]
11
3d array data2 = [[[1]]] arr2 = np.array(data2) print arr2
print arr2.ndim print arr2.shape
12
3d array OUTPUT [[[1]]] 3 (1L, 1L, 1L) data2 = [[[1]]]
arr2 = np.array(data2) print arr2 print arr2.ndim print arr2.shape OUTPUT [[[1]]] 3 (1L, 1L, 1L)
13
More making arrays np.zeros(10) np.zeros((3, 6)) np.empty((2, 3, 2))
[ ] [[ ] [ ] [ ]] [[[ ] [ ] [ ]] [[ ] [ ]]] np.zeros(10) np.zeros((3, 6)) np.empty((2, 3, 2))
14
Operations between arrays and scalars
arr = np.array ([1., 2., 3.]) print arr print arr * arr print arr - arr print 1 / arr print arr ** 0.5
15
Operations between arrays and scalars
output [ ] [ ] [ ] [ ] [ ] arr = np.array ([1., 2., 3.]) print arr print arr * arr print arr - arr print 1 / arr print arr ** 0.5
16
Array creation functions
17
a=np.array([True], dtype=np.int64)
print a print a.dtype a=np.array([True], dtype=np.bool)
18
[1] Int64 [ True] bool a=np.array([True], dtype=np.int64) print a
print a.dtype a=np.array([True], dtype=np.bool) [1] Int64 [ True] bool
19
NumPy data types 1
20
NumPy data types 2
21
astype [ 3.7 -1.2 -2.6] [ 3 -1 -2] arr = np.array( [3.7, -1.2, -2.6])
print arr print arr.astype(np.int32) note that the data has been truncated.
22
astype - string to float
numeric_strings = np.array(['1.25', '-9.6', '42'], dtype=np.string_) print numeric_strings print numeric_strings.astype(float) ['1.25' '-9.6' '42'] [ ]
23
Basic indexing and slicing (broadcasting)
arr = np.arange(10) print arr print arr[5] print arr[5:8] arr[5:8] = 12 [ ] 5 [5 6 7] [ ]
24
The original array has changed
arr_slice = arr[5:8] arr_slice[1] = 12345 print arr arr_slice[:] = 64 [ ] [ ]
25
2d array [7 8 9] 3 arr2d = np.array ([[1, 2, 3], [4, 5, 6],
[7, 8, 9]]) print arr2d[2] print arr2d[0][2] print arr2d[0, 2] (last two are same) [7 8 9] 3
26
3d array [[[ 1 2 3] [ 4 5 6]] [[ 7 8 9] [10 11 12]]] [[1 2 3] [4 5 6]]
[[[ ] [ ]] [[ ] [ ]]] [[1 2 3] [4 5 6]] [ ]] arr3d = np.array ([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]) print arr3d print arr3d[0] print arr3d[1]
27
Indexing with slices – 1D
arr = np.arange(10) print arr print arr[1:6] Output [ ] [ ]
28
Indexing with slices – 2D
[[1 2 3] [4 5 6] [7 8 9]] [4 5 6]] [[2 3] [5 6]] arr2d = np.array( [[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print arr2d print arr2d[:2] print arr2d[:2, 1:]
29
Indexing with slices – 2D
arr2d = np.array( [[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print arr2d[1, :2] print arr2d[2, :1] print arr2d[:, :1] [4 5] [7] [[1] [4] [7]]
30
Fancy indexing indexing using integer arrays arr = np.empty((8, 4))
[[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]] [[ ] [ ] [ ]] [[ ] [ ]] Fancy indexing indexing using integer arrays arr = np.empty((8, 4)) for i in range(8): arr[i] = i print arr print arr[[4, 3, 0, 6]] print arr[[-3, -5, -7]] Negative index select from the end
31
Transposing arrays and swapping axes
[[ ] [ ] [ ]] (3L, 5L) [[ ] [ ] [ ] [ ] [ ]] (5L, 3L) Transposing arrays and swapping axes arr = np.arange(15).reshape((3, 5)) print arr print arr.shape print arr.T print arr.T.shape
32
Inner Product (dot operator)
[[0 1] [2 3]] [[0 2] [1 3]] [[ 4 6] [ 6 10]] [[ 1 3] [ 3 13]] arr = np.arange(4). reshape((2, 2)) print arr print arr.T print np.dot(arr.T, arr) print np.dot(arr, arr.T)
33
Inner Product (dot operator)
arr = np.arange(9).reshape((3, 3)) print arr print np.dot(arr.T, arr) [[0 1 2] [3 4 5] [6 7 8]] [[ ] [ ] [ ]]
34
arr*arr [[ 0 1 4] [[0 1 2] [ 9 16 25] [3 4 5] [36 49 64]] [6 7 8]]
arr = np.arange(9).reshape((3, 3)) print arr print arr*arr [[0 1 2] [3 4 5] [6 7 8]] [[ ] [ ] [ ]]
35
Fast element-wise array functions
arr = np.arange(5) print arr print np.sqrt(arr) print np.exp(arr) [ ] [ ] [ ]
36
element-wise maximum x = randn(4) y = randn(4) print x print y
print np.maximum(x, y) [ ] [ ] [ ]
37
element-wise add x = randn(4) y = randn(4) print x print y
print np.add(x, y) [ ] [ ] [ ]
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.