Presentation is loading. Please wait.

Presentation is loading. Please wait.

A hybrid model for the wind profile

Similar presentations


Presentation on theme: "A hybrid model for the wind profile"β€” Presentation transcript:

1 A hybrid model for the wind profile
for the whole boundary layer Sven-Erik Gryning1 Ekaterina Batchvarova1,2 1 DTU Wind Energy, RisΓΈ Campus, Technical University of Denmark, Denmark 2 National Institute of Meteorology and Hydrology, Sofia, Bulgaria

2 The turning of the wind has recieved little attention in the wind energy community
although it can result in reduced energy production and reduced lifetime We present work on a parameterization that accounts for the effect of the: Boundary-layer height Baroclinity (horizontal temperatute gradient) Atmospheric stability. Preliminary results suggest that applying non-dimensional scaling of the turning of the wind, (z/h) versus non-dimensional Ekman scaling are in relatively good agreement.

3 (well known to all I presume )
Basic equations (well known to all I presume ) 𝑓 π‘£βˆ’ 𝑣 𝐺 = πœ• 𝑒 β€² 𝑀 β€² πœ•π‘§ βˆ’π‘“ π‘’βˆ’ 𝑒 𝐺 = πœ• 𝑣 β€² 𝑀 β€² πœ•π‘§ Momentum flux divergence Coriolis force Pressure force βˆ’ 𝑒 β€² 𝑀 β€² =𝐾 πœ•π‘’ πœ•π‘§ βˆ’ 𝑣 β€² 𝑀 β€² =𝐾 πœ•π‘£ πœ•π‘§ first order closure

4 Applying the lower boundary conditions 𝑒=𝑣=0 at 𝑧=0
𝑒=𝑣=0 at 𝑧=0 and approximating the K profile with a power law, 𝐾= 𝐾 0 𝑧 π‘š the angle Ξ± between the surface and the geostrophic wind is shown below (KΓΆhler 1933)

5 Taylor – Ekman analytical solution
𝑓 π‘£βˆ’ 𝑣 𝐺 = πœ• 𝑒 β€² 𝑀 β€² πœ•π‘§ βˆ’π‘“ π‘’βˆ’ 𝑒 𝐺 = πœ• 𝑣 β€² 𝑀 β€² πœ•π‘§ βˆ’ 𝑒 β€² 𝑀 β€² = 𝐾 0 πœ•π‘’ πœ•π‘§ βˆ’ 𝑣 β€² 𝑀 β€² = 𝐾 0 πœ•π‘£ πœ•π‘§ first order closure with K= 𝐾 0 Applying the angle Ξ± as lower boundary conditions arctan 𝑣 𝑒 =𝛼 at 𝑧=0 (and not 𝑒=𝑣=0 )

6 Taylor-Ekman 𝑒= 𝑒 𝐺 1βˆ’ 2 𝑠𝑖𝑛 𝛼 𝑒 βˆ’π›Ύπ‘§ π‘π‘œπ‘  π›Ύπ‘§βˆ’π›Ό+ πœ‹ 4
𝑒= 𝑒 𝐺 1βˆ’ 2 𝑠𝑖𝑛 𝛼 𝑒 βˆ’π›Ύπ‘§ π‘π‘œπ‘  π›Ύπ‘§βˆ’π›Ό+ πœ‹ 4  𝑣= 𝑒 𝐺 𝑠𝑖𝑛 𝛼 𝑒 βˆ’π›Ύπ‘§ 𝑠𝑖𝑛 π›Ύπ‘§βˆ’π›Ό+ πœ‹ 4 𝛼≦ πœ‹ 4 Note the wind direction is counterclock wise.

7 For 𝛼≧ πœ‹ 4 the following equations are suggested (mirror 𝛼= πœ‹ 4)
𝑣= 𝑒 𝐺 π‘π‘œπ‘  𝛼 𝑒 βˆ’π›Ύπ‘§ 𝑠𝑖𝑛 𝛾𝑧+π›Όβˆ’ πœ‹ 4 π‘‘π‘Žπ‘› 2 𝛼 𝑒= 𝑒 𝐺 1βˆ’ 2 π‘π‘œπ‘  𝛼 𝑒 βˆ’π›Ύπ‘§ π‘π‘œπ‘  𝛾𝑧+π›Όβˆ’ πœ‹ 4

8 How to deal with baroclinic effects?
HΓΈvsΓΈre site) In a baroclinic atmosphere the geostrophic wind generally has vertical shear, which is related to the horizontal temperature difference. The effect on the wind is perpendicular to the temperature gradient. The baroclinic effects on the turning of the wind may be very pronounced and can be stronger than the Coriolis forces. At HΓΈvsΓΈre (Floors 2013) during the winter (land cold and sea relatively warmer) the thermal wind was directed towards the south; during the summer (land warm and sea relatively cold) it was directed towards northeast.

9 Introducing baroclinicity in the Taylor-Ekman solution.
𝑓 π‘£βˆ’ 𝑣 𝐺 = πœ• 𝑒 β€² 𝑀 β€² πœ•π‘§ βˆ’π‘“ π‘’βˆ’ 𝑒 𝐺 = πœ• 𝑣 β€² 𝑀 β€² πœ•π‘§ 𝑣 𝐺 = 𝑣 𝐺0 + πœ† 𝑦 𝑧 𝑒 𝐺 = 𝑒 𝐺0 + πœ† π‘₯ 𝑧 πœ† 𝑦 = 𝑔 𝑇 𝑓 πœ•π‘‡ πœ•π‘₯ πœ† 𝑦 = 1 𝑓 πœ• Ξ¦ 𝑧 βˆ’ Ξ¦ 0 πœ•π‘₯ πœ† π‘₯ =βˆ’ 𝑔 𝑇 𝑓 πœ•π‘‡ πœ•π‘¦ πœ† π‘₯ =βˆ’ 1 𝑓 πœ• Ξ¦ 𝑧 βˆ’ Ξ¦ 0 πœ•π‘¦ or or where 𝑒 𝐺0 and 𝑣 𝐺0 are surface geostrophic wind and πœ† π‘₯,𝑦 represent the thermal wind components. 𝑒= 𝑒 𝐺 1βˆ’ 2 𝑠𝑖𝑛 𝛼 𝑒 βˆ’π›Ύπ‘§ π‘π‘œπ‘  π›Ύπ‘§βˆ’π›Ό+ πœ‹ πœ† π‘₯ 𝑧  𝑣= 𝑒 𝐺 𝑠𝑖𝑛 𝛼 𝑒 βˆ’π›Ύπ‘§ 𝑠𝑖𝑛 π›Ύπ‘§βˆ’π›Ό+ πœ‹ 4 + πœ† 𝑦 𝑧

10 Boundary-layer height
Boundary-layer height Derive K at 10% of the boundary layer height (K= 𝑒 βˆ— β„Ž π‘Ÿπ‘’π‘Žπ‘™ ) β„Ž πΈπ‘˜ =πœ‹ 2𝐾 𝑓 β„Ž π‘Ÿπ‘’π‘Žπ‘™ =0.1 𝑒 βˆ— 𝑓 Neutral conditions (neutral) β„Ž πΈπ‘˜ =πœ‹ 2 πœ… 𝑒 βˆ— β„Ž π‘Ÿπ‘’π‘Žπ‘™ 𝑓 β„Ž π‘Ÿπ‘’π‘Žπ‘™ = 𝐢 𝑁 2 πœ… 𝑒 βˆ— β„Ž π‘Ÿπ‘’π‘Žπ‘™ 𝑓 β„Ž π‘Ÿπ‘’π‘Žπ‘™ = 𝐢 𝑁 2 2 πœ… 𝑒 βˆ— 0.1 𝑓 =0.1 𝑒 βˆ— 𝑓 𝐢 𝑁 =1.12 β„Ž π‘Ÿπ‘’π‘Žπ‘™ β„Ž πΈπ‘˜ = 𝐢 𝑁 πœ‹ β‰ˆ0.4

11 Boundary-layer height
Boundary-layer height We derive K at 10% of the boundary layer height β„Ž π‘Ÿπ‘’π‘Žπ‘™ = 𝑒 βˆ— 𝐿 𝑓 β„Ž πΈπ‘˜ =πœ‹ 2𝐾 𝑓 Stable conditions: (stable) β„Ž 𝐸𝐾 =Ο€ 2 πœ… 𝑒 βˆ— β„Ž π‘Ÿπ‘’π‘Žπ‘™ β„Ž π‘Ÿπ‘’π‘Žπ‘™ 𝐿 𝑓 β„Ž π‘Ÿπ‘’π‘Žπ‘™ = 𝐢 𝑆𝑇 2 πœ… 𝑒 βˆ— β„Ž π‘Ÿπ‘’π‘Žπ‘™ β„Ž π‘Ÿπ‘’π‘Žπ‘™ 𝐿 𝑓 β„Ž π‘Ÿπ‘’π‘Žπ‘™ = 𝐢 𝑆𝑇 2 πœ… 𝑒 βˆ— 𝐿 𝑓 β„Ž π‘Ÿπ‘’π‘Žπ‘™ = 𝑒 βˆ— 𝐿 𝑓 𝐢 𝑆𝑇 =1.12 Then when 𝐢 𝑆𝑇 β‰ˆ 𝐢 𝑁 (0.46 is the mean value from COST710 report)

12 Apply the measurements from ”The HΓΈvsΓΈre tall wind-profile experiment”
Validation Apply the measurements from ”The HΓΈvsΓΈre tall wind-profile experiment” PeΓ±a, Floors and Gryning (BLM) Case β„Ž (m) 𝑒 βˆ— (m s-1) 𝑒 𝑑 (s-1) 𝑣 𝑑 G L 𝛼 π‘šπ‘’π‘Ž (Β°) 1 100 0.19 0.0017 6.9 286 61 StableΒ  2 250 0.37 10.8 -3333 26 Neutral 3 350 0.38 14.6 130 42 4 850 0.45 21.3 222 50 5 1200 0.70 19.3 -2000 25 Β Neutral 6 1300 0.62 20.4 -476 14 UnstableΒ  7 750 0.56 14.9 ∞ 27 8 700 13.9 370 -12 BackingΒ  9 0.26 5.4 -25 15 10 950 0.0046 11.8 71 12

13

14

15 Conclusions The real boundary-layer height (in physical units) typically is 40%-50% of the Ekman boundary-layer height. Use of standard boundary-layer scaling (z/h) versus non-dimensional Ekman scaling are in relatively good agreement. The Taylor-Ekman solution with baroclinic effects added, in combination with the geostrophic drag law, is a good candidate for further work on a parametrization of the turning of the wind. Needs to be validated on a larger data-set. The stability corrections on A and B in the geostrophic drag law need improvements.

16 Thanks for your attention


Download ppt "A hybrid model for the wind profile"

Similar presentations


Ads by Google