Presentation is loading. Please wait.

Presentation is loading. Please wait.

OFDM System Performance

Similar presentations


Presentation on theme: "OFDM System Performance"— Presentation transcript:

1 OFDM System Performance
November 2000 OFDM System Performance Karen Halford, Steve Halford and Mark Webster K. Halford, S. Halford and M. Webster

2 Outline of Proposal Presentations
November 2000 Outline of Proposal Presentations TGg Regulatory Approval Plan Speaker: Jim Zyren Overview of OFDM for High Rate Speaker: Steve Halford Reuse of b Preambles with OFDM Speaker: Mark Webster Ultra-short Preamble with HRb OFDM Speaker: Mark Webster OFDM System Performance Speaker: Steve Halford Power Am Effects for HRb OFDM Speaker: Mark Webster Channelization for HRb OFDM Speaker: Mark Webster Phase Noise Sensitivity for HRb OFDM Speaker: Mark Webster Implementation and Complexity Issues for OFDM Speaker: Steve Halford Why OFDM for the High Rate b Extension? Speaker: Jim Zyren K. Halford, S. Halford and M. Webster

3 Outline of Presentation
November 2000 Outline of Presentation 5.1 AWGN Performance 5.2 Rayleigh Fading Performance 5.3 Multipath Performance 5.3.1 Exponential Channel with Flat Fading 5.3.2 Exponential Channel without Flat Fading (Normalized) 5.3.3 PER sweeps from 1% to 10 % 5.4 Throughput Performance 5.5 Performance Against CW Jammer (FCC Test) K. Halford, S. Halford and M. Webster

4 5.1 AWGN Performance: 100 Byte Packets
November 2000 5.1 AWGN Performance: 100 Byte Packets K. Halford, S. Halford and M. Webster

5 5.1 AWGN Performance: 1000 Byte Packets
November 2000 5.1 AWGN Performance: 1000 Byte Packets K. Halford, S. Halford and M. Webster

6 5.1 AWGN Performance: 2346 Byte Packets
November 2000 5.1 AWGN Performance: 2346 Byte Packets K. Halford, S. Halford and M. Webster

7 5.1 AWGN Performance: 1% and 10 % PER for 1000 Byte Packets
November 2000 5.1 AWGN Performance: 1% and 10 % PER for 1000 Byte Packets Eb/No required for 1 % PER Eb/No required for 10 % PER K. Halford, S. Halford and M. Webster

8 5.2 Rayleigh Fading Performance: Block Diagram
November 2000 5.2 Rayleigh Fading Performance: Block Diagram Calculate Noise Power (N0) Generate Noise Measure energy per bit Measure Packet Error Rate Transmitter Model Packet Error Rate x + Receiver Model Rayleigh Coefficient Packet Length Data Rate K. Halford, S. Halford and M. Webster

9 5.2 Rayleigh Fading Performance: 1000 Byte Packets
November 2000 5.2 Rayleigh Fading Performance: Byte Packets K. Halford, S. Halford and M. Webster

10 5.2 Rayleigh Fading Performance: 1% and 10 % PER for 1000 Byte Packets
November 2000 5.2 Rayleigh Fading Performance: 1% and 10 % PER for 1000 Byte Packets Eb/No required for 1 % PER Eb/No required for 10 % PER K. Halford, S. Halford and M. Webster

11 5.3.1 Multipath Performance with Flat Fading: Block Diagram
November 2000 5.3.1 Multipath Performance with Flat Fading: Block Diagram Calculate Noise Power (N0) Generate Noise Measure energy per bit Measure Packet Error Rate Packet Error Rate Exponential Channel Model Transmitter Model Receiver Model Packet Length Data Rate Sample Rate Delay Spread K. Halford, S. Halford and M. Webster

12 5.3.1 Multipath Performance with Flat Fading: Matlab® Code
November 2000 5.3.1 Multipath Performance with Flat Fading: Matlab® Code K. Halford, S. Halford and M. Webster

13 5.3.1 Multipath Performance with Flat Fading: Eb/No
November 2000 5.3.1 Multipath Performance with Flat Fading: Eb/No K. Halford, S. Halford and M. Webster

14 5.3.1 Multipath Performance with Flat Fading: SNR
November 2000 5.3.1 Multipath Performance with Flat Fading: SNR K. Halford, S. Halford and M. Webster

15 5.3.2 Multipath Performance without Flat Fading: Block Diagram
November 2000 5.3.2 Multipath Performance without Flat Fading: Block Diagram Calculate Noise Power (N0) Generate Noise Measure energy per bit Measure Packet Error Rate Exponential Channel Model Transmitter Model Receiver Model Packet Error Rate Packet Length Data Rate Sample Rate Delay Spread K. Halford, S. Halford and M. Webster

16 5.3.2 Multipath Performance without Flat Fading: Eb/No
November 2000 5.3.2 Multipath Performance without Flat Fading: Eb/No K. Halford, S. Halford and M. Webster

17 5.3.2 Multipath Performance without Flat Fading: SNR
November 2000 5.3.2 Multipath Performance without Flat Fading: SNR K. Halford, S. Halford and M. Webster

18 5.3.3: Multipath Sweeps: 1% to 10%
November 2000 5.3.3: Multipath Sweeps: 1% to 10% Comparison Item 24 For each modulation mode detemine and state the SNR (Es/No) at which in AWGN only, the waveform can achieve a PER of 0.01 for packets lengths of 1000B. Using the multipath model used in 23b above, fix the amount of AWGN at the 0.01 PER level for AWGN only. Increase the RMS delay spread until the PER for 1000B packets reach State the RMS delay spread at this point. Answer: 0.0 nSeconds for all rates Why ? K. Halford, S. Halford and M. Webster

19 5.3.3 Multipath Sweeps: 1% to 10%
November 2000 5.3.3 Multipath Sweeps: 1% to 10% PER Curves are very steep -- about 2 dB separates the 1% from the 10 % point K. Halford, S. Halford and M. Webster

20 5.3.3 Multipath Sweeps: 1% to 10%
November 2000 5.3.3 Multipath Sweeps: 1% to 10% Rayleigh fading causes frequent swings to low SNR level K. Halford, S. Halford and M. Webster

21 5.3.3 Multipath Sweeps: 1% to 10%
November 2000 5.3.3 Multipath Sweeps: 1% to 10% What we ran in place of Comparison Item 24 For each modulation mode detemine and state the SNR (Es/No) at which 25 nSeconds RMS delay, the waveform can achieve a PER of 0.01 for packets lengths of 1000B. Using the multipath model used in 23c above, fix the amount of AWGN at the 0.01 PER level for 25 nSeconds RMS delay. Increase the RMS delay spread until the PER for 1000B packets reach State the RMS delay spread at this point. K. Halford, S. Halford and M. Webster

22 5.3.3 Multipath Performance: PER sweeps from 1% to 10%
November 2000 5.3.3 Multipath Performance: PER sweeps from 1% to 10% K. Halford, S. Halford and M. Webster

23 5.4 Throughput Performance
November 2000 5.4 Throughput Performance 5.4.1 Preamble Structures 5.4.2 ACK Assumptions 5.4.3 Throughput Analysis Tables of 100, 1000, 2346 Byte Packets Plots for full range of packet sizes 5.4.4 Throughput analysis for varying durations of overhead K. Halford, S. Halford and M. Webster

24 5.4.1 Preamble Structures: Long and Short Preambles
November 2000 5.4.1 Preamble Structures: Long and Short Preambles HRb LONG PREAMBLE Signal Extension OFDM SYNC PSDU SELECTABLE OFDM Symbols @ 6.6, 9.6, 13.2, 19.8, 26.4, 39.3, 52.8 or 59.4 Mbps PREAMBLE/HEADER 192 usecs 10.9 usecs ~6 usecs Data Payload HRb SHORT PREAMBLE Signal Extension PREAM/HDR 72 BITS @ 1 Mbps OFDM SYNC PSDU SELECTABLE OFDM Symbols @ 6.6, 9.6, 13.2, 19.8, 26.4, 39.3, 52.8 or 59.4 Mbps ~6 usecs 96 usecs 10.9 usecs K. Halford, S. Halford and M. Webster

25 5.4.1 Preamble Structures: Ultra-Short Preamble
November 2000 5.4.1 Preamble Structures: Ultra-Short Preamble Proposed Ultra-Short Preamble Signal Extension Data Rate # bytes of data Data Payload 12 Short Syncs Rep’s Long SYNC PSDU SELECTABLE @ 6.6, 9.9, 13.2, 19.8, 26.4, 39.6, 52.8 or 59.4 Mbps SIGNAL SYMBOL 16 usecs 3.6 usecs ~6 usecs K. Halford, S. Halford and M. Webster

26 5.4.2 ACK Assumptions 1) No RTS/CTS OR MPDU < RTS_Threshold:
November 2000 5.4.2 ACK Assumptions 1) No RTS/CTS OR MPDU < RTS_Threshold: Many different scenarios, but the constant is: {MPDU, SIFS, ACK} source DIFS Data destination SIFS ACK 2) RTS/CTS and/or MPDU > RTS_Threshold: source DIFS RTS SIFS Data destination SIFS CTS SIFS ACK 3) Middle of Fragmented Transmission: source SIFS Fragment 1 destination SIFS ACK 1 K. Halford, S. Halford and M. Webster

27 5.4.2 ACK Assumptions (continued)
November 2000 5.4.2 ACK Assumptions (continued) Mbps = 20 usec SIFS PSDU SELECTABLE OFDM Symbols @ 6.6, 9.6, 13.2, 19.8, 26.4, 39.3, 52.8 or 59.4 Mbps Packet Header Packet Header ACK OFDM PAD ~6 usecs K. Halford, S. Halford and M. Webster

28 5.4.3.1 Throughput for 100 Byte Packets
November 2000 Throughput for 100 Byte Packets K. Halford, S. Halford and M. Webster

29 5.4.3.1 Throughput for 1000 Byte Packets
November 2000 Throughput for 1000 Byte Packets K. Halford, S. Halford and M. Webster

30 5.4.3.1 Throughput for 2346 Byte Packets
November 2000 Throughput for 2346 Byte Packets K. Halford, S. Halford and M. Webster

31 5.4.3.2 Throughput with ACK November 2000
K. Halford, S. Halford and M. Webster

32 5.4.3.2 Throughput without ACK
November 2000 Throughput without ACK K. Halford, S. Halford and M. Webster

33 5.4.4 Comparison of Throughput for Variable Overhead for 100 Byte MPDU
November 2000 5.4.4 Comparison of Throughput for Variable Overhead for 100 Byte MPDU K. Halford, S. Halford and M. Webster

34 November 2000 5.4.4 Comparison of Throughput for Variable Overhead for 1000 Byte MPDU K. Halford, S. Halford and M. Webster

35 November 2000 5.4.4 Comparison of Throughput for Variable Overhead for 2346 Byte MPDU K. Halford, S. Halford and M. Webster

36 5.4.5 Aggregate Throughputs for 2.4 GHz
November 2000 5.4.5 Aggregate Throughputs for 2.4 GHz Our proposal allows for 3 channels in US 2.4 GHz band Each channel can coexist in the same area Aggregate throughput is 3 times single channel throughput K. Halford, S. Halford and M. Webster

37 5.5 CW Jammer Test Description
November 2000 5.5 CW Jammer Test Description CW jammer test steps a CW tone across the signal band in 50 kHz steps. At each step, the jamming level required to to produce the recommended BER is determined. The worst 20% of the J/S levels are discarded and the smallest of the remaining J/S is used as the jamming margin. Processing gain is then calculated according to the following: K. Halford, S. Halford and M. Webster

38 5.5 Performance Against CW Jammer
November 2000 5.5 Performance Against CW Jammer Gp = (S/N)0 + Mj + Lsys K. Halford, S. Halford and M. Webster


Download ppt "OFDM System Performance"

Similar presentations


Ads by Google