Download presentation
Presentation is loading. Please wait.
1
Modeling Coronal Mass Ejections with EUHFORIA
A Parameter Study of a Flux Rope Model Christine Verbeke1, C. Scolini1,2, J. Pomoell3, S. Poedts1, E. Asvestari3, E. Kilpua3 1KU Leuven, Belgium, 2ROB, Belgium, 3University of Helsinki, Finland
2
EUHFORIA Heliospheric 3D MHD simulations
Insertion of Coronal Mass Ejections (CMEs) possible
3
Empirical / data-driven models
EUHFORIA Magnetogram: GONG Solar wind model: Semi-empirical Heliosphere model: Time-dependent 3D MHD CME model: - Cone model - Flux rope model Coronagraph imagery + others 0.1 AU 2 AU Observational data Empirical / data-driven models Physics-based model
4
Cone model vs Spheromak model: Bz (HEEQ)
Cone model Spheromak model Credit: C. Scolini
5
Spheromak model at 1AU: Starting model
Credit: C. Scolini
6
Flux rope model: Parameters
Flux rope modeled as Linear Force Free Spheromak Start time of CME Propagation velocity of CME Latitude of centre of CME source region Longitude of centre of CME source region Half-width of CME Density of CME Temperature of CME Title angle of the CME Helicity of the CME Total toroidal flux CME kinematics Cone model Flux rope parameters
7
CME model parameters: multi-viewpoint observations
Magnetic parameters: Flux determination: FRED [Gopalswamy+,2017] FRED by combining two key results: the reconnected (RC) flux during an eruption approximately equals the poloidal flux of the ejected flux white-light or EUV coronal mass ejections (CMEs) can be fit to a FR to get its geometrical properties The RC flux is computed from the area under post-eruption arcades and the underlying unsigned photospheric magnetic field strength. The poloidal flux of the FR is known from the RC flux; assuming that the FR is force free (Lundquist) we can get the axial and azimuthal field components and the toroidal flux of the flux rope. Kinematic parameters: GCS modeling Credit: C. Scolini
8
LFF Spheromak: Br (HEEQ)
9
LFF Spheromak: Bclt (HEEQ)
10
LFF Spheromak: Blon (HEEQ)
11
Flux rope model: Parameters
Flux rope modeled as Linear Force Free Spheromak Start time of CME Propagation velocity of CME Latitude of centre of CME source region Longitude of centre of CME source region Half-width of CME Density of CME Temperature of CME Title angle of the CME Helicity of the CME Total toroidal flux CME kinematics Cone model Flux rope parameters
12
Flux rope model: Parameters
Flux rope modeled as Linear Force Free Spheromak Start time of CME Propagation velocity of CME Latitude of centre of CME source region Longitude of centre of CME source region Half-width of CME Density of CME Temperature of CME Title angle of the CME Helicity of the CME Total toroidal flux CME kinematics Cone model Flux rope parameters
13
Speed of CME Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
14
Speed of CME Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
15
Speed of CME Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
16
Speed of CME Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
17
Speed of CME Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
18
Speed of CME Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14 CME speed is not affecting the magnetic field significantly, but effect on arrival time and density.
19
Flux rope model: Parameters
Flux rope modeled as Linear Force Free Spheromak Start time of CME Propagation velocity of CME Latitude of centre of CME source region Longitude of centre of CME source region Half-width of CME Density of CME Temperature of CME Title angle of the CME Helicity of the CME Total toroidal flux CME kinematics Cone model Flux rope parameters
20
Longitude/Latitude Centre of CME misses Earth
21
Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
22
Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
23
Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
24
Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
25
Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
26
Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
27
Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
28
Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
29
Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
30
Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
31
Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
32
Longitude Similar observations can be made for changes in latitude
33
Longitude Similar observations can be made for changes in latitude
It is possible to miss the high impact of a CME by varying the longitude within the errors of observations
34
Flux rope model: Parameters
Flux rope modeled as Linear Force Free Spheromak Start time of CME Propagation velocity of CME Latitude of centre of CME source region Longitude of centre of CME source region Half-width of CME Density of CME Temperature of CME Title angle of the CME Helicity of the CME Total toroidal flux CME kinematics Cone model Flux rope parameters
35
Flux Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun
-5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
36
Flux Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun
-5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
37
Flux Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun
-5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
38
Flux Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun
-5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
39
Flux Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun
-5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14
40
Flux Flux affects arrival time and B strength.
Lat Lon Width Speed Density Helicity Tilt angle Flux baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14 Flux affects arrival time and B strength. Be careful about total pressure!
41
Conclusions Small changes in input parameters can have large influence on B, v and rho and thus the impact of the CME at Earth Input parameters all have their errors We need ensemble runs for flux rope CME simulations Future work: Pressure balance Quantification of how well a simulation does? Erosion? Deflection? Effect solar wind?
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.