Presentation is loading. Please wait.

Presentation is loading. Please wait.

Modeling Coronal Mass Ejections with EUHFORIA

Similar presentations


Presentation on theme: "Modeling Coronal Mass Ejections with EUHFORIA"— Presentation transcript:

1 Modeling Coronal Mass Ejections with EUHFORIA
A Parameter Study of a Flux Rope Model Christine Verbeke1, C. Scolini1,2, J. Pomoell3, S. Poedts1, E. Asvestari3, E. Kilpua3 1KU Leuven, Belgium, 2ROB, Belgium, 3University of Helsinki, Finland

2 EUHFORIA Heliospheric 3D MHD simulations
Insertion of Coronal Mass Ejections (CMEs) possible

3 Empirical / data-driven models
EUHFORIA Magnetogram: GONG Solar wind model: Semi-empirical Heliosphere model: Time-dependent 3D MHD CME model: - Cone model - Flux rope model Coronagraph imagery + others 0.1 AU 2 AU Observational data Empirical / data-driven models Physics-based model

4 Cone model vs Spheromak model: Bz (HEEQ)
Cone model Spheromak model Credit: C. Scolini

5 Spheromak model at 1AU: Starting model
Credit: C. Scolini

6 Flux rope model: Parameters
Flux rope modeled as Linear Force Free Spheromak Start time of CME Propagation velocity of CME Latitude of centre of CME source region Longitude of centre of CME source region Half-width of CME Density of CME Temperature of CME Title angle of the CME Helicity of the CME Total toroidal flux CME kinematics Cone model Flux rope parameters

7 CME model parameters: multi-viewpoint observations
Magnetic parameters: Flux determination: FRED [Gopalswamy+,2017] FRED by combining two key results: the reconnected (RC) flux during an eruption approximately equals the poloidal flux of the ejected flux white-light or EUV coronal mass ejections (CMEs) can be fit to a FR to get its geometrical properties The RC flux is computed from the area under post-eruption arcades and the underlying unsigned photospheric magnetic field strength. The poloidal flux of the FR is known from the RC flux; assuming that the FR is force free (Lundquist) we can get the axial and azimuthal field components and the toroidal flux of the flux rope. Kinematic parameters: GCS modeling Credit: C. Scolini

8 LFF Spheromak: Br (HEEQ)

9 LFF Spheromak: Bclt (HEEQ)

10 LFF Spheromak: Blon (HEEQ)

11 Flux rope model: Parameters
Flux rope modeled as Linear Force Free Spheromak Start time of CME Propagation velocity of CME Latitude of centre of CME source region Longitude of centre of CME source region Half-width of CME Density of CME Temperature of CME Title angle of the CME Helicity of the CME Total toroidal flux CME kinematics Cone model Flux rope parameters

12 Flux rope model: Parameters
Flux rope modeled as Linear Force Free Spheromak Start time of CME Propagation velocity of CME Latitude of centre of CME source region Longitude of centre of CME source region Half-width of CME Density of CME Temperature of CME Title angle of the CME Helicity of the CME Total toroidal flux CME kinematics Cone model Flux rope parameters

13 Speed of CME Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

14 Speed of CME Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

15 Speed of CME Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

16 Speed of CME Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

17 Speed of CME Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

18 Speed of CME Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14 CME speed is not affecting the magnetic field significantly, but effect on arrival time and density.

19 Flux rope model: Parameters
Flux rope modeled as Linear Force Free Spheromak Start time of CME Propagation velocity of CME Latitude of centre of CME source region Longitude of centre of CME source region Half-width of CME Density of CME Temperature of CME Title angle of the CME Helicity of the CME Total toroidal flux CME kinematics Cone model Flux rope parameters

20 Longitude/Latitude Centre of CME misses Earth

21 Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

22 Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

23 Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

24 Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

25 Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

26 Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

27 Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

28 Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

29 Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

30 Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

31 Longitude Time Lat Lon Width Speed Density Helicity Tilt angle Flux
baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

32 Longitude Similar observations can be made for changes in latitude

33 Longitude Similar observations can be made for changes in latitude
It is possible to miss the high impact of a CME by varying the longitude within the errors of observations

34 Flux rope model: Parameters
Flux rope modeled as Linear Force Free Spheromak Start time of CME Propagation velocity of CME Latitude of centre of CME source region Longitude of centre of CME source region Half-width of CME Density of CME Temperature of CME Title angle of the CME Helicity of the CME Total toroidal flux CME kinematics Cone model Flux rope parameters

35 Flux Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun
-5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

36 Flux Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun
-5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

37 Flux Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun
-5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

38 Flux Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun
-5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

39 Flux Time Lat Lon Width Speed Density Helicity Tilt angle Flux baserun
-5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14

40 Flux Flux affects arrival time and B strength.
Lat Lon Width Speed Density Helicity Tilt angle Flux baserun T19:02:00 -5 -2 31 1300.0 0.5e-18 1.0 90.0 0.7e14 Flux affects arrival time and B strength. Be careful about total pressure!

41 Conclusions Small changes in input parameters can have large influence on B, v and rho and thus the impact of the CME at Earth Input parameters all have their errors  We need ensemble runs for flux rope CME simulations Future work: Pressure balance Quantification of how well a simulation does? Erosion? Deflection? Effect solar wind?


Download ppt "Modeling Coronal Mass Ejections with EUHFORIA"

Similar presentations


Ads by Google