Download presentation
Presentation is loading. Please wait.
1
Evolutionary Mechanisms
Other Evolutionary Mechanisms Hawaiian Red jungle fowl exhibit greatly elongated tails, and blonde hackles in many males, another trait accrued from G. Various hybrid founders. 1
2
Genetic Equilibrium Vs. Evolution
In genetic terms, evolution is any change in the relative frequency of alleles in a population. The situation when the allele frequencies remain the same is called genetic equilibrium. If the frequencies do not change, the population will not evolve.
3
Maintaining a Species In order to maintain a species (no new alleles in gene pool), certain criteria must be met. There must be: A large population No change in DNA No natural selection No immigration or emigration Random mating These 5 conditions are referred to as the Hardy-Weinberg Principle. 3
4
Population Size Effects
In small populations, there are less options for mating, therefore any evolutionary changes occur more rapidly In large populations there are more alleles available, so one change does not make a big difference to the population These changes are due solely to chance factors. The smaller the population, the more susceptible it is to such random changes and loss in genetic variation.
5
If evolution DOES occur, it may be through:
Genetic drift Bottleneck Effect Founder Effect Gene Flow Mutations Genetic Recombination
6
Genetic Drift Genetic Drift is the random change in allele frequencies that occurs in small populations. Some individuals, just by chance, leave behind a few more descendents than others. This is different than natural selection because it is not survival of the fittest
7
Genetic Drift Genetic drift can cause populations to lose genetic variation and it does not usually create new adaptations. There are two types of genetic drift: Bottleneck Effect Founder Effect See hill.com/sites/ /student_view0/chapter20/simulation_of_genetic_drift.ht ml 7
8
The Bottleneck Effect Environmental events may reduce population sizes dramatically ex: earthquakes, floods, fires, and over hunting by humans Those that survive the disaster may not accurately represent the original population Alleles may be overrepresented among survivors, some may be eliminated completely.
9
The Founder Effect Occasionally a small group of individuals within a population may migrate and become isolated from the original population. This smaller group is the ‘founding’ population The result for this new founding population is often high frequencies of specific genetic traits inherited from the founding ancestor Certain alleles may go missing all together as a consequence, resulting in a loss of genetic diversity.
10
The Founder Effect Population Island The Mainland
11
The Founder Effect The Mainland
A few individuals colonize a new isolated area The Mainland 11
12
The Founder Effect There may be a higher frequency of one allele in the founder population just by chance This allele did not have been very common in the original population 12
13
The island population grows
The Founder Effect Island The island population grows 13
14
…after a few generations
One allele may be lost completely if individuals fail to leave offspring carrying it. Island 14
15
…after a few generations
Mutations may occur creating new alleles Island 15
16
…after a few more generations
The new allele becomes more common Island 16
17
The 2 populations now look very different!
Island The Mainland 17
18
Remember…. If evolution DOES occur, it may be through:
Genetic drift Bottleneck Effect Founder Effect Gene Flow Mutations Genetic Recombination
19
Gene Flow Gene flow is when alleles are transferred from one population to another. This happens when there is migration. If alleles are carried to a population where those alleles previously did not exist, gene flow can be a very important source of genetic variation.
20
Gene Flow By moving alleles around, it can make distant populations genetically similar to one another, thus reducing the chance of speciation. Example: The allele for brown coloration moves from one population to another and eventually both populations will have brown alleles.
21
Remember…. If evolution DOES occur, it may be through:
Genetic drift Bottleneck Effect Founder Effect Gene Flow Mutations Genetic Recombination
22
Mutations Mutations are random changes in DNA.
Mutations can be beneficial, neutral, or harmful for an organism, but mutations do not “try” to supply what the organism “needs.” To pass a mutation on to the next generation, it must occur to a reproductive cell (gamete).
23
Remember…. If evolution DOES occur, it may be through:
Genetic drift Bottleneck Effect Founder Effect Gene Flow Mutations Genetic Recombination
24
Genetic Recombination
Sexually reproducing organisms can create new combinations of alleles. Crossing-over that occurs in meiosis can recombine or “shuffle” alleles in sex cells.
25
Genetic Recombination
When egg and sperm meet, the offspring inherits a combination of genes that is totally unique. Gametes carries versions of genes from previous generations plus any mutations that occurred during meiosis
26
Effect of Genetic Recombination
Differences among individuals add to the diversity and variation within the population. Diversity means that alleles are changing over time, which means that evolution is occurring.
27
In Summary… Changes to a population over time = EVOLUTION
No changes to a population = genetic equilibrium = NO EVOLUTION The four ways that changes CAN be made to a population are explained above!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.