Download presentation
Presentation is loading. Please wait.
Published byJacopo Pieri Modified over 6 years ago
1
Probabilistic Graphical Models Independencies Preliminaries
2
Independence For events , , P if:
P(, ) = P() P() P(|) = P() P(|) = P() For random variables X,Y, P X Y if: P(X, Y) = P(X) P(Y) P(X|Y) = P(X) P(Y|X) = P(Y) forall x,y P(x,y)=P(x)P(y) equivalently, equality of factors
3
Independence P(I,D) I D G I D G Prob. i0 d0 g1 0.126 g2 0.168 g3 d1
0.009 0.045 i1 0.252 0.0224 0.0056 0.06 0.036 0.024 I Prob i0 0.6 i1 0.4 P(I,D) I D Prob i0 d0 0.42 d1 0.18 i1 0.28 0.12 D Prob d0 0.7 d1 0.3 Equality of factors
4
Conditional Independence
For (sets of) random variables X,Y,Z P (X Y | Z) if: P(X, Y|Z) = P(X|Z) P(Y|Z) P(X|Y,Z) = P(X|Z) P(Y|X,Z) = P(X|Z) P(X,Y,Z) 1(X,Y) 2(Y,Z) forall x,y P(x,y|z)=P(x|z)P(y|z)
5
Conditional Independence
Coin X1 X2
6
Conditional Independence
G S I S G Prob. i0 s0 g1 0.126 g2 0.168 g3 s1 0.009 0.045 i1 0.252 0.0224 0.0056 0.06 0.036 0.024 P(S,G | i0) S Prob s0 0.95 s1 0.05 S G Prob. s0 g1 0.19 g2 0.323 g3 0.437 s1 0.01 0.017 0.023 G Prob. g1 0.2 g2 0.34 g3 0.46
7
Conditioning can Lose Independences
Prob. i0 d0 g1 0.126 g2 0.168 g3 d1 0.009 0.045 i1 0.252 0.0224 0.0056 0.06 0.036 0.024 P(I,D | g1) I D Prob. i0 d0 0.282 d1 0.02 i1 0.564 0.134
8
END END END
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.