Download presentation
Presentation is loading. Please wait.
1
H(0), one-color, VMI and slicing images
HBr, H(0), one-color, VMI and slicing images KER spectra VMI, H(0) vs J´(=J´´)………………………………………..2-3 Branching ratios………………………………………………………………..4-5 Comments on KER´s …………………………………………………………6 Images, J´= 0 – 9……………………………………………………………….7-8 Prediction calculations……………………………………………………..9-14 Conversion factor improvement……………………………………….12-14 Comparison of conversion factors…………………………………...15 Slice images……………………………………………………………………….16 Angular distributions (VMI)……………………………………………… b2 vs J´ for H* + Br………………………………………………………………20,21 Two color exp……………………………………………………………………..22 Br detection……………………………………………………………………… Br* detection………………………………………………………………………27-39 H detection, J´= 3……………………………………………………………… Updated:
2
I(H*+Br*) I(H*+Br) HBr+*/HBr+
J´=J´´= 9 8 7 6 5 4 3 2 1 KER/eV …PXP ,pxp; Lay:0; Gr:12; NB: conversion factor for KER = e-5*(pix)**2 = KER(eV)
3
I(H*+Br*) I(H*+Br) HBr+*/HBr+
J´=J´´= 9 8 7 6 5 4 3 2 1 KER/eV …PXP a,pxp; Lay:0; Gr:12; NB: conversion factor for KER = e-5*(pix)**2 = KER(eV)
4
H(0) I(H*+Br*)/I(H*+Br) J´ …PXP ,pxp; Lay:1; Gr:13
5
I(HBr+/HBr+*)/I(H*+Br)
J´ …PXP ,pxp; Lay:2; Gr:14
6
H(0) Comments: I(H*+Br) weakest analogous to V(m+i) states near in energy Shift of H*+Br* and H*+Br peaks with J´ Insignificant shifts of HBr+/HBr+* peaks with J´ I(H*+Br*)/I(H*+Br) for odd J´s larger than for even J´s. (Slight (?) increase in I(H*+Br*)/I(H*+Br) with J´) (Slight (?) decrease in I(HBr+/HBr+*)/I(H*+Br) with J´)
7
J = H(0), one color VMI J =
8
J = H(0), one color VMI J = 9 Comments: „H*+Br*“ and „HBr+/HBr+*“ seem to be parallel throughout J´ whereas „H*+Br“ seems to switch from parallel to perpendicular and back to parallel as J´ increases.
9
H(0) Now prediction calculations.
10
I(H*+Br*) I(H*+Br) HBr+*/HBr+
Prediction calculations J´= J´´= 9 8 7 6 5 4 3 2 1 KER/eV …PXP a,pxp; Lay:0; Gr:12; <= ……XLS a.xlsx, sheet: „KER I, II“; NB: conversion factor for KER = e-5*(pix)**2 = KER(eV)
11
I(H*+Br*) I(H*+Br) HBr+*/HBr+
Prediction calculations for ½ <- ½ 3/2 <- 3/2 J´= J´´= 9 8 7 6 5 4 3 2 1 KER/eV …PXP a,pxp; Lay:0; Gr:12; <= ……XLS a.xlsx, sheet: „KER I, II“ and „KER III,IV“; NB: conversion factor for KER = e-5*(pix)**2 = KER(eV)
12
H(0) Comments: Looks like small shift or distortion: could be because the scaling factor (C) in inaccurate. …..try altering „C“ KER scale calibration improvement: Pixel -> eV conversion factor = e-5 (instead of e-5) See definition in figures.
13
I(H*+Br*) I(H*+Br) HBr+*/HBr+
Prediction calculations J´= J´´= 9 8 7 6 5 4 3 2 1 11 13 9 11 KER/eV …PXP ,pxp; Lay:0; Gr:12; <= ……XLS a.xlsx, sheet: „KER I, II“ and „KER III,IV“; NB: conversion factor for KER = e-5*(pix)**2 = KER(eV)
14
I(H*+Br*) I(H*+Br) HBr+*/HBr+
Prediction calculations for ½ <- ½ 3/2 <- 3/2 J´= J´´= 9 8 7 6 5 4 3 2 1 v+ = 11 13 v+ = 9 11 KER/eV …PXP ,pxp; Lay:0; Gr:12; <= ……XLS a.xlsx, sheet: „KER I, II“ and „KER III,IV“; NB: conversion factor for KER = e-5*(pix)**2 = KER(eV)
15
Comparison of the effects of Scaling factors (C):
predictions Comparison of the effects of Scaling factors (C): C: 2.05 e-5 (from Dimitris) C: e-5 C: e-5 Definition: C* (pix)2= KER H(0) J´= J´´= predictions v+ = 13 3/2<-3/2 1/2<-1/2 v+ = KER/eV …PXP ,pxp; Lay:3; Gr:15; <= ……XLS a.xlsx, sheet: „KER I, II“ and „KER III,IV“; NB: conversion factor for KER = e-5*(pix)**2 = KER(eV)
16
J = H(0), one color slicing images, xf´s J =
17
H(0) H(0) I(H*+Br*) H(0) VMI I(H*+Br) J´= J´´= J´= J´´= q q 9 8 7 6 5
4 3 2 1 J´= J´´= 9 8 7 6 5 4 3 2 1 q q …PXP ,pxp; Lay:5; Gr:17; …PXP ,pxp; Lay:4; Gr:16;
18
H(0) H(0) I(H*+Br*) H(0) VMI J´= J´´= q 9 8 7 6 5 4 3 2 1
q …PXP ,pxp; Lay:5; Gr:17;
19
H(0) HBr+ (top peak) H(0) VMI Fits: J´= J´´= J´= J´´= q 9 9 8 8 7 7 6
5 4 3 2 1 J´= J´´= 9 8 7 6 5 4 3 2 1 q …PXP ,pxp; Lay:6; Gr:18; …PXP ,pxp; Lay:6; Gr:18;
20
One-step analysis using b2 and b4
H(0) I(HBr+; top peak) I(H*+Br*) I(H*+Br) H(0), VMI One-step analysis using b2 and b4 b2 J´ …PXP a,pxp; Lay:6; Gr:17; <= XLS xlsx: sheet: „Angle fits“
21
H(0) Comments: HBr+(top peak): virtally purely parallel Beta2 for H*+Br* ca. Constant with J´ Significant alteration in beta2 vs J´for H* +Br
22
Two-color experiments:
H(0) Two-color experiments:
23
Two color Br-detection:
H(0) Two color Br-detection:
24
Two color Br-detection:
H(0) H(0) Two color Br-detection: J´= J´´= 2 1 KER(total)/eV …PXP c,pxp; Lay:0; Gr:1;
25
Two color Br-detection:
H(0) H(0) Two color Br-detection: J´= J´´= 2 1 q …PXP b,pxp; Lay:0; Gr:42;
26
Two color Br-detection:
H(0) Two color Br-detection: b2 J´ …PXP b,pxp; Lay:1; Gr:0;
27
Two color Br*-detection:
28
Two color Br*-detection:
H(0) Two color Br*-detection: 58 J´=J´´ = 2 21 pix …PXP pxp; Lay:0, Gr:2
29
Two color Br*-detection:
H(0) Two color Br*-detection: 5.799 eV J´=J´´ = 2 0.76 eV KER(total)/eV …PXP pxp; Lay:1, Gr:3; conversion factor for pix to KER(eV) = 80*(2/3)* e-5*(pix)**2
30
Two color Br*-detection: Prediction calc.:
H(0) Two color Br*-detection: Prediction calc.: H(0) J´ hv 2hv 3hv E(J´´) KER(Br(1/2)) cm-1 eV 2 39818,85 79637,7 119456,6 50,07752 45792,53752 5, …XLS b.xlsx; sheet: „KERb,2hv,Br“ H(0) J´ hv 2hv 3hv E(J´´) KER(Br(1/2)) cm-1 eV 2 39818,85 79637,7 119456,6 50,07752 5973,687524 0, …XLS b.xlsx; sheet: „KERa,hv,Br“ ERGO the two peaks are Low KER = 1hv excitation followed by dissociation to form H + Br*(1/2) high KER = 2hv resonance excitation followed by predissociation to form H + Br*(1/2)
31
Two color Br*-detection (1st exp. 140930):
H(0) Two color Br*-detection (1st exp ): J´=J´´= 5 4 3 2 1 2hv peak 1hv peak pix …PXP pxp; Lay:2, Gr:4
32
Two color Br*-detection: („2nd experiment“, 141001) J´=J´´= 1hv peak
9 8 7 6 5 4 3 2 1 1hv peak 2hv peak pix …PXP pxp; Lay:3, Gr:5
33
Comment: The relative intensities of the 2hv vs. 1hv peak is not reproducable, whereas the overall trend of I(1hv) > I(2hv) seems to hold.
34
Clearly the center (675.5 535)is not good enough
Two color Br*-detection (1st exp ), lower KER peak/“1hv peak“ (near 0.76 eV): J´=J´´= 5 4 3 2 1 q Clearly the center ( )is not good enough Try (675, 537), which Pavle was using …PXP e.pxp; Lay:0, Gr:1
35
The center (675.5 535)is not good enough
Two color Br*-detection (1st exp ), higher KER peak/“2hv peak“ (near 5.8 eV): J´=J´´= 5 4 3 2 1 q The center ( )is not good enough Try (675, 537), which Pavle was using …PXP d.pxp; Lay:0, Gr:2
36
Two color Br*-detection (1st exp. 140930),
H(0) Two color Br*-detection (1st exp ), 1hv b2 2hv J´ …PXP d.pxp; Lay:?, Gr:?
37
Above processing is limited due to inaccurate center used in the angular distribution
Process. Nevertheless the overall picture is clear, i.e.: 1hv peak: virtually purely parallel, corresponding to S -> S transition 2hv peak: perpendicular 2hv-transition, i.e. S -> P -> S We will now process H(0), 2 color, Br* detection, 2nd exp. data, -which shows stronger signals than the 1st exp. -by using the center: NB: USE: beta2, beta4 AND beta6:
38
H(0) J´=J´´= J´= J´´= 2hv peak 1hv peak q q
Two color Br*-detection (2nd exp ): J´=J´´= 9 8 7 6 5 4 3 2 1 J´= J´´= 9 8 7 6 5 4 3 2 1 2hv peak 1hv peak q q …PXP a.pxp; Lay:6, Gr:6 …PXP a.pxp; Lay:5, Gr:7
39
H(0) Two color Br*-detection (2nd exp ), (NB: for beta2,beta4 and beta6 fit) 1hv b2 2hv J´ …PXP a.pxp; Lay:4, Gr:8
40
Two color H-detection:
41
H(0) Only very small difference KER(total) eV
Two color exp. H-detection (set1): Two-color, 1) nm (HBr resonance excitation) 2) nm H resonance excitation, Only very small difference H detection, one color, nm (J´´=3->->J´=3 resonance) H detection, one color, nm (H->->H* resonance) KER(total) eV …PXP f.pxp; Lay:0, Gr:1
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.