Download presentation
Presentation is loading. Please wait.
1
Fault Collapsing via Functional Dominance
Vishwani D. Agrawal Rutgers University, Dept. of ECE, Piscataway, New Jersey, USA A. V. S. S. Prasad and M. V. Atre Agere Systems, Bangalore, India May 15, 2003 Agrawal et al.: Fault Collapsing
2
Test Vector Generation Flow
DUT Generate fault list Collapse fault list Generate test vectors Fault Model Required fault coverage May 15, 2003 Agrawal et al.: Fault Collapsing
3
Agrawal et al.: Fault Collapsing
Background Single stuck-at fault model is the most popularly used model. Two faults f1 and f2 are equivalent if the same tests detect f1 and f2 (f1=f2) If all tests of fault f2 also detect fault f1, then f1 is said to dominate f2 (f2f1). a0 = b0 = c0 : Equivalence a1 c1 : Dominance b1 c1 : Dominance a0 a1 c0 c1 b0 b1 May 15, 2003 Agrawal et al.: Fault Collapsing
4
Agrawal et al.: Fault Collapsing
Background Both equivalence and dominance relations are transitive in nature. [ (f1 f2) and (f2 f3) => (f1 f3) ] If f1 dominates f2 and f2 dominates f1 then f1 and f2 are equivalent. [ (f1 f2) and (f2 f1) => (f1 = f2) ] Number of faults in a 2-input AND gate reduces from 6 to 4 (by equivalence) and to 3 (by dominance) collapsing. Example: c6288, #faults = #equ. = 7744 (0.62), #dom. = 5824 (0.46) May 15, 2003 Agrawal et al.: Fault Collapsing
5
Agrawal et al.: Fault Collapsing
Problem Statement To devise a new method for fault collapsing with following attributes: A single procedure for equivalence and dominance Global analysis (independence from direction, and other choices, in collapsing) Use functional equivalences and dominances Hierarchical fault collapsing (collapsing in large circuits using pre-collapsed sub networks) May 15, 2003 Agrawal et al.: Fault Collapsing
6
Agrawal et al.: Fault Collapsing
Dominance Graph A fault in the circuit is represented by a node in the graph. A directed edge from f2 to f1 indicates that f1 dominates f2 (f2 f1). Edges can represent either structural or functional relations. May 15, 2003 Agrawal et al.: Fault Collapsing
7
Agrawal et al.: Fault Collapsing
Dominance Matrix Graph is represented as a connectivity matrix Each fault is assumed to be equivalent to itself Treats functional and structural relations identically (f1 f2) and (f2 f1) => f2 = f1. Appear as symmetrical components in the matrix (e.g., a0,b0,c0) #faults = 6 (dimension of dominance matrix) 2-input AND gate May 15, 2003 Agrawal et al.: Fault Collapsing
8
Agrawal et al.: Fault Collapsing
Transitive Closure Transitive closure (TC) of the dominance matrix gives all dominance relations between faults. TC is computed by the O(n3) Floyd-Warshall algorithm, where n is the dimension of the dominance matrix. May 15, 2003 Agrawal et al.: Fault Collapsing
9
Agrawal et al.: Fault Collapsing
Transitive Closure (F1 F2) and (F2 F3) => (F1 F3) F1 F2 F3 1 Transitive Closure F1 F2 F3 1 Graph May 15, 2003 Agrawal et al.: Fault Collapsing
10
Agrawal et al.: Fault Collapsing
Example A D E B C Dominance Graph E0 E1 Transitive closure edges D0 C0 D1 C1 B0 A0 B1 A1 May 15, 2003 Agrawal et al.: Fault Collapsing
11
Agrawal et al.: Fault Collapsing
Functional Dominance f1 Always 0 f0 f2 f1 dominates f2 May 15, 2003 Agrawal et al.: Fault Collapsing
12
Functional Equivalence
Always 0 f0 f2 f1 dominates f2 and f2 dominates f1 May 15, 2003 Agrawal et al.: Fault Collapsing
13
Functional Equivalence
Always 0 f2 f1 Always 0 f2 May 15, 2003 Agrawal et al.: Fault Collapsing
14
Agrawal et al.: Fault Collapsing
XOR Circuit c1 h1 g1 g0 m0 i1 f1 Functional Equivalences : (c1,f1), (g1,h1,i1), (g0,m0), (d1,f0) and (e1,c0); additional dominances not shown May 15, 2003 Agrawal et al.: Fault Collapsing
15
Agrawal et al.: Fault Collapsing
XOR Circuit Structural equivalence collapsing 16 faults May 15, 2003 Agrawal et al.: Fault Collapsing
16
Agrawal et al.: Fault Collapsing
XOR Circuit Functional equivalence collapsing 10 faults May 15, 2003 Agrawal et al.: Fault Collapsing
17
Agrawal et al.: Fault Collapsing
XOR Circuit Functional dominance collapsing 4 faults May 15, 2003 Agrawal et al.: Fault Collapsing
18
Agrawal et al.: Fault Collapsing
Design Hierarchy Large designs are modular and hierarchical. Advantageous to store the fault information of repeated blocks in a library. When configured as a library cell the fault list includes cell PI & PO faults for transitivity. Top module B1 B1 B0 C0 C0 C0 C0 C1 C1 May 15, 2003 Agrawal et al.: Fault Collapsing
19
8-bit Ripple Carry Adder
May 15, 2003 Agrawal et al.: Fault Collapsing
20
Fault Collapsing Using Functional Dominances of xor
Number of collapsed faults Flat structural only Hierarchical with functional Equ. Dom. xor cell 24 16(0.63) 13(0.54) 10(0.41) 4(0.17) Full-adder 60 38(0.63) 30(0.50) 26(0.43) 14(0.23) 8-bit adder 466 290(0.62) 226(0.49) 194(0.42) 112(0.24) c499exp 2710 1574(0.58) 1210(0.45) 950(0.35) 586(0.22) Circuit name All faults May 15, 2003 Agrawal et al.: Fault Collapsing
21
Agrawal et al.: Fault Collapsing
References A. Lioy, “Looking for Functional Equivalence,” Proc. ITC, 1991, pp A. V. S. S. Prasad, V. D. Agrawal and M. V. Atre, “A New Algorithm for Global Fault Collapsing into Equivalence and Dominance Sets,” Proc. ITC, 2002, pp H. Al-Asaad and R. Lee, “Simulation-Based Approximate Global Fault Collapsing,” Proc. Int. Conf. VLSI, 2002, pp V. D. Agrawal, A. V. S. S. Prasad and M. V. Atre, “Fault Collapsing via Functional Dominance,” Proc. ITC, 2003 (accepted). May 15, 2003 Agrawal et al.: Fault Collapsing
22
Agrawal et al.: Fault Collapsing
Conclusion A new algorithm for global fault collapsing With functional equivalence number of faults for ATPG reduces Fault set reduced below 25% with functional dominances (Caution: fault coverage not correct when redundant faults are present) Library based hierarchical fault collapsing is a useful concept Further studies are being carried out on independent fault sets May 15, 2003 Agrawal et al.: Fault Collapsing
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.