Presentation is loading. Please wait.

Presentation is loading. Please wait.

Towards The Columns Design of Super Prof. AbdulQader Najmi.

Similar presentations


Presentation on theme: "Towards The Columns Design of Super Prof. AbdulQader Najmi."— Presentation transcript:

1 Towards The Columns Design of Super Prof. AbdulQader Najmi

2 Description:  Tubular Column – Square or Round  Filled with Concrete
 Provided with U-Links welded to its Walls as shown in Figure 1

3 Compression Specimen U-Links are used to Confine Concrete

4 What is a Super Column?  Large Forces  Sustains Large Axial Strains
 Has A Unique Type of Failure

5 Super Column Failure:  By Plastic Buckling of the steel Tube.
 Not by the Crushing of Concrete.  Concrete does not fail  In fact: Concrete deforms inside the buckled tube shape depicting its exact inside shape with no signs of cracking!!!

6 3 Million pounds Apparatus – Newmark Lab
- University of Illinois at Urbana Champaign Author among professors from Civil and Mechanical Engineering Departments.

7 Test Specimen fitted with all sorts of
measuring devices

8 Concrete reshaped – No signs of cracks

9 Summary of Test Results f m a x . f c = 30 MPa f c = 23.7 MPa
Square Specimens Group-1 Circular Specimens Group-2 Circular Specimens Group-3 Rectangular Specimens group-4 Specimen C1- 000 C1- 040 C1- 030 cc- 000 cc- 040 cc- 030 cc- 020 C2C -000 C2C- 020 REC- 000 REC -045 REC- 035 Spacing of U-Links (mm) - 40 30 - 40 30 20 - 20 - 45 35 Ultimate Load (kN) 1104 1568 1620 1230 1693 1744 1947 2270 3290 1900 2280 2306 ' 0.85 1.73 1.83 0.86 1.87 1.98 2.43 0.78 1.77 0.85 1.58 1.63 f m a x . f c f c = 30 MPa ' A  m m 2 f (shell) =320 MPa Dia. of U-link = 8 mm f (link) = 335 MPa f c = 23.7 MPa ' A  m m 2 f (shell) = 355 MPa Dia. of U-link = 8 mm f (link) = 335 MPa f c = 27.1 MPa ' A  m m f (shell) = 454 MPa Dia. of U-link = 10mm f y (link) = 486 2 A  m m 2 ' f (shell) = 367 MPa Dia. of U-link = 10 mm f (link) = 486 MPa f c = 23.4 MPa c c c c y y y y y y y Summary of the results.

10          
Test Results at Newmark Laboratories Control Specimen 1222 kips #2 (Control)   tra ns verse strain            average axial strain  concrete a xial s train  average overall s train  Avg rebar Avg axial Avg trans Avg overall Fig. 14 : Load ‐ Axial Strain Steel Tube, Axial strain of concrete (imbedment), Transverse  strain of tube, Average overall strain of specimen (Control Specimen)  Applied load, P (kips) Strain,  1222 kips Imbedment 

11          
3/8” U-Links 250 kips ksi added =20% #3 (3/8" rebar)    average axial stra in            embedment s train  average overall s train  Imbedment kips Avg rebar  Avg axial Avg trans Avg overall e mbe dment strain (concrete), a verage overall strain   Applied load, P (kips) ave rage transverse s rtain in,  Stra Fig. 15: Lo a d ‐ a verage tra nsverse strain, a verage axial strain (tu be),

12          
½ “ U-Links 281 kips ksi added =23% #4 (1/2" rebar)                 Imbedment Avg rebar  Avg axial Avg trans Avg overall  1503 kips  Applied load, P (kips) Strain, 

13          
5/8” U-Links 360 kips ksi added =30% #5 (5/8" rebar)                 Imbedment Avg rebar  Avg axial Avg trans Avg overall   Applied load, P (kips) Strain,  1582 kips

14 Filled Composite Rectangular Columns AISC Specifications
P  P  F A  0.85f ' A P   P   0.75 no p y s c c u c n c P  P  Pp Py    2  r p  P  F A  0.7f ' A   b / t  E Fy   b / t  E Fy b / t  E no p    2 p p r Fy y y s c c P  F A  0.7f ' A F  9E s  t  Pno  2.25 Pe y cr s c c  Pno    Pu  0.75  0.877Pe cr  b    2 Pu  0.75Pno 0.658 Pe  EI eff .  E s I s  C 3E c I c  As   Ac  As  E  w f ' C 3  0.6  2    0.9 c c c P   2 EI ef f . e  KL 2

15   2 EI ef f . Pu  0.75Pno 0.658 Pe     KL 2
Pno  Pu  0.75Pno 0.658 Pe (1) P  P  F A  0.85f ' A (2) no p y s   2 EI ef f . c c Where: P (3) e  KL 2 EI eff .  E s I s  C 3 E c I c  As  C 3  0.6  2  A   0.9  c s   A Pno Pe Ac E c EI eff E s Fy I s K L  nominal strength  elastic buckling load  area of concrete  modulus of elasticity of concrete  effective stiffness of composite section  modulus of elasticity of steel  minimum yield sress of steel  moment of inertia of steel shape  effective length factor  laterally unbraced length  concrete grade  weight of concrete per unit volume  coefficient related to filled composite compression member  Pno for compact sections  area of steel shape  0.75 f ' c w c C 3 Pp As c

16 Compact section AISC Equation I2-9b Page 16.1-87
AISC Code Calculations AISC Eqn. 12-9b f 'c  B  t des  B i  E s  Fy  HSS 8  8 1 / 2 Leff .  1.7 ft 7.84 8 0.465 7.07 29000 46 t  0.93  1  0.465" 2 E p  b / t  F Ac  I c  des . f c Unconfined  ' 49.98 208.21 y 2 A  13.5 in P Pe 7.84 56.75 P   2 EI eff .  K L  no 1.00   b / t  14.2 P  P  F A  0.85f ' A Compact section AISC Equation I2-9b Page e 2 0.009 no p y s c c I  125 in 4 s ' E c  w f c 954.10 P Pn  Pno     no  Pe 5144 950.6 Effective Stiffness EI eff .  E s I s  C 3E c I c  A  C 3  0.6  2  A  A   0.9 s  c s  C 3  1.55 0.900 Newmark Lab -Illnois 1582 EI eff .  1503 1472 #3 1222 1.20 U‐Link 3/8 inches spacing 1.5 inches ‐ added 250 kips

17  y  Fy E  E s 1  1st secant modulus of steel (E steel ) f c  f
''   "  enhanced stress attained of concrete f ' c c n  E s 1  E  2nd secant modulus of steel at n E s 2 s 2 y f ' E c 2  2nd secant modulus of concrete at n y c n AT Fy n  E s 1 ,  E s 1 , A E N F  f ' A s 2 n  Ac E c 2 s y c c  2 E I  As 1  s 2 T A ... (steel units), A .... (steel units), P  L 2 cT N s 2 n n   2 E AT  AcT  As 2 (steel units) I s 2  (steel units), I cT   s A   L    2 T I (b  2t ) (b  2t )3 s ...(steel units) n N 12   r T  I (b  2t )4 I  s  ...(steel units) T n N A (b  2t )2 A  s  ....(steel units) T n N r  I T (steel units) T AT

18 Non-Linear Transformation
Calculations Applies to: Linear, plastic and Strain Hardening Stages U 3  8 HSS 8 HSS 8  8 1/2 n  E s 1 E s 2 Fy E s 1 As 1 b t Ac 2 Acs 1 E '' s 2 f  c ' f c E cs 2 75 387 46 29000 13.5 8 0.465 50.0 0.25 f ' c I s 2 As 2  b 2t  2 2.172 7.84 143 E s 1 AT I T N r A 125 y 0.18 T cs 1 N EcT I s 1 0.0016 0.43 2.69 2.51 0.25 202.60 E  I s 2  b 2t  (b  2t ) 3 1.67 s 1 I nF  2 (E ) I T n N 12 y P Pn  s T b 2t 4 I  12N 9.11 n L2 A b  2t  2 E 1472 1472 cs 1 A  s 2  L   s 1 rT 22.89 1472 1.03 T n N y nF P A F ' P n s y f A c c f ' E cs 2  n c L (ft) 1.91 y Co l umns: Pn  AT   n n [  [  Fy  constant ]  E s 1 Beams:        y y E s2

19 Multi-Cell Column Cross-sections Figure :9
Four Cell Cross-Section Four Cell Cr oss-Section Five Cell Cross-Section Three Cell Cross-Section Figure :9 Suggested Layouts of the multi-Cell Columns Two Cell Cross-Section

20 CONCLUSION  The strength of a compression cell is linked to the U-Links provided, the use of square tubes ensures a uniform confinement of concrete.  The ultimate strains attained in the compression cells together with the large inertia properties of multi-cell cross-sections results in high design moments close to plastic moments when considering large unsupported lengths.  The failure of such columns will tend to be linked to plastic buckling of steel tubes rather than of crushing in concrete.


Download ppt "Towards The Columns Design of Super Prof. AbdulQader Najmi."

Similar presentations


Ads by Google