Presentation is loading. Please wait.

Presentation is loading. Please wait.

A Spatial Data and Sensor Network Application:

Similar presentations


Presentation on theme: "A Spatial Data and Sensor Network Application:"— Presentation transcript:

1 A Spatial Data and Sensor Network Application:
CubE for Active Situation Replication (CEASR) Nano-sensors dropped into the Situation space Situation space Wherever threshold level is sensed (chem, bio, thermal...) a ping is registered in 1 compressed Ptree for that location. Using Alien Technology’s Fluidic Self-assembly (FSA) technology, clear layers are laminated into a cube, with a embedded nano-LED at each voxel. .:.:.:.:..::….:. : …:…:: ..: . . :: :.:…: :..:..::. .:: ..:.::.. The Ptree is transmitted to the cube, where the pattern is reconstructed (uncompress Ptree, display on the cube). Each energized nano-sensor transmits a ping (location is triangulated from the ping). These locations are then translated to 3-dimensional coordinates at the display. The corresponding voxel on the display lights up. This is the expendable, one-time, cheap sensor version. A more sophisticated CEASR device could sense and transmit the intensity levels, lighting up the display voxel with the same intensity. Soldier sees replica of sensed situation prior to entering space ================================== \ CARRIER /

2 Spatial Data Pixel – a point in a space
Band – feature attribute of the pixels Value – usually one byte (0~255) Images have different numbers of bands TM4/5: 7 bands (B, G, R, NIR, MIR, TIR, MIR2) TM7: 8 bands (B, G, R, NIR, MIR, TIR, MIR2, PC) TIFF: 3 bands (B, G, R) Ground data: individual bands (Yield, Moisture, Nitrate level, Temperature, elevation…) These notes contain NDSU confidential & Proprietary material. Patents pending on Ptree technology

3 RSI dataset example RSI data can be viewed as collection of pixels. Each pixel has a value for each feature attribute TIFF image Yield Map For example, the RSI dataset above has 320 rows and 320 columns of pixels (102,400 pixels) and 4 feature attributes (B,G,R,Y). The (B,G,R) feature bands are in the TIFF image and the Y feature is color coded in the Yield Map.

4 Spatial Data Formats Existing formats BSQ (Band Sequential)
BIL (Band Interleaved by Line) BIP (Band Interleaved by Pixel) New format bSQ (bit Sequential) BAND-1 ( ) ( ) ( ) ( ) BAND-2 ( ) ( ) ( ) ( ) BSQ format (2 files) Band 1: Band 2:

5 Spatial Data Formats (Cont.)
BAND-1 ( ) ( ) ( ) ( ) BAND-2 ( ) ( ) ( ) ( ) BSQ format (2 files) Band 1: Band 2: BIL format (1 file) BAND-1 ( ) ( ) ( ) ( ) BAND-2 ( ) ( ) ( ) ( ) BSQ format (2 files) Band 1: Band 2: BIL format (1 file) BIP format (1 file)

6 Spatial Data Formats (Cont.)
BAND-1 ( ) ( ) ( ) ( ) BAND-2 ( ) ( ) ( ) ( ) BSQ format (2 files) Band 1: Band 2: BIL format (1 file) BIP format (1 file) bSQ format (16 files) B11 B12 B13 B14 B15 B16 B17 B18 B21 B22 B23 B24 B25 B26 B27 B28

7 Spatial Formats Split each band into eight separate files, one for each bit position. Reasons of using bSQ format Different bits contribute to the value differently. bSQ format facilitates representation of a precision hierarchy (from 1 to 8 bit precision). bSQ format facilitates creation of an efficient data structure, the P-tree, algebra and cube. BSQ and bSQ are “tabular” formats BSQ consist of a separate table for each feature band bSQ consist of a separate table for each bit of each band One can view it this way: The data set is initially 1 relation or table, R(K1,..,Kk, A1, …, An) where K1,..,Kk are structure attributes and Ai are feature attributes. Structure attributes of a 2-D image are X,Y coordinates of the pixels (rows). Feature attributes are the bands, B,G,R, NIR, … BSQ we separate each feature into a separate file and suppress the structure attributes altogether (assuming pixels are always arranged in raster order. (aka: Decomposition Storage Model (DSM), Copeland et al, SIGMOD85, ) bSQ, separate each bit of each feature into separate file (raster order assumption) (aka: Bit Transpose File (BTF) model, Wong et al, VLDB85, pp )

8 An example of PC-tree Peano or Z-ordering
1 Given a bSQ file, Bij, (shown in spatial positions also) we create its basic PC-tree, Pij as follows. 55 16 8 15 3 4 1 55 1 3 1 16 15 16 8 1 4 1 4 3 4 4 1 1 Peano or Z-ordering Pure (Pure-1/Pure-0) quadrant Root Count Level Fan-out QID (Quadrant ID)

9 Our example of PC-tree (again)
001 55 16 8 15 3 4 1 Level-3 1 2 3 Level-2 2 3 Level-1 111 Level-0 Peano or Z-ordering Pure (Pure-1/Pure-0) quadrant Root Count Level Fan-out QID (Quadrant ID) ( 7, 1 ) ( 111, 001 )

10 P-tree variation – PM-tree
1 Peano Mask tree (PM-tree) uses mask instead of count. 1 denotes pure-1, 0 denotes pure-0 and m denotes mixed. It provides an efficient way for ANDing. Most compact form (all lossless) Predicate Tree (1 iff predicate is true for quadrant) E.g., Pure1-Tree (predicate: quad is all 1’s)

11 Depth-first Pure 1 path code
Ptree Algebra And Or Complement Other Ptree: ____________/ / \ \___________ / ___ / \___ \ / / \ \ ____8__ _15__ / / | \ / | \ \ //|\ //|\ //|\ Complement: ____8__ __1__ PM-tree1: m ______/ / \ \______ / / \ \ / / \ \ m m / / \ \ / / \ \ m m m 1 //|\ //|\ //|\ PM-tree2: m m / / \ \ m //|\ 0100 AND Result: m ________ / / \ \___ / ____ / \ \ / / \ \ m / | \ \ 1 1 m m //|\ //|\ Depth-first Pure 1 path code &  RESULT  0  20  21  231

12 Basic, Value and Tuple Ptrees
Basic Ptrees (a Pure1-Trees predicate-tree for target bit of target attribute) e.g., P11, P12, …, P18, P21, …, P28, …, P71, …, P78 Target Attribute Target Bit Position Value Ptrees (predicate: quad is purely target value in target attribute) e.g., P1, 5 = P1, = P11 AND P12’ AND P13 AND Target Attribute Target Value Tuple Ptrees (predicate: quad is purely target tuple) e.g., P(1, 2, 3) = P(001, 010, 111) = P1, AND P2, AND P3, 111 AND Cube Ptrees (predicate: quad is purely in target cube (product of intervals) e.g., P([13],, [0.2]) = (P1,1 OR P1,2 OR P1,3) AND (P3,0 OR P3,1 OR P3,2) AND/OR

13 Creating Peano-Count-trees (PC-trees) from Spatial Relations
Take any spatial relation, R(K1,..,Kk, A1, A2, …, An) (Ki=structure, Ai=feature attributes). Eg, Structure attributes of a 2-D image = X-Y coords, feature attribs = bands (e.g., B,G,R) We create BSQ files from it by projection, Bi = R[Ai]. We create bSQ files from each of these BSQ files, Bi1, Bi2 , …, Bin We create a Peano Tree, Pij, from each bSQ file, Bij Peano trees (P-trees): P-tree represents bSQ, BSQ, relational data in a recursive quadrant-by-quadrant, lossless, compressed, datamining-ready format. P-trees come in many forms Count-trees (PC-trees); Predicate-trees (P1, P0, PN1, PNZ, value-P-trees, tuple-P-trees, cube-P-trees)

14 PM= P1 xor NP0 PCT: .--- 55 ---. / / \ \ 16 8 15 16 // \ \ // \\
Other forms: Predicate Ptrees (1 if condition is true thruout the quadrant, else 0) (P1 and P0 are lossless) PCT: / / \ \ // \ \ // \\ //|\ //|\ //|\ Pure1Tree (P1T) / / \ \ // \ \ // \ \ //|\ //|\ //|\ Pure0Tree (P0T) / / \ \ // \ \ // \ \ //|\ //|\ //|\ NotPure0(NP0T) / / \ \ // \ \ // \ \ //|\ //|\ //|\ NotPure1(NP1T) / / \ \ // \ \ // \\ //|\ //|\ //|\ Vector Implemented Ptrees (Vector Ptrees have 1 row for each mixed quadrant, with that quadrant’s (qid, P-vector) P1V Qid PgVc [] [1] [1.0] [1.3] [2] [2.2] P0V [] [1] [1.0] [1.3] [2] [2.2] NP0V [] [1] [2] NP1V [] [1] [2] PeanoMixed (PM) / / \ \ // \ \ // \ \ //|\ //|\ //|\ PMV Qid PgVc [] [1] [2] Leaf-vectors always Can be omitted. We may need Peano Mixed (PM) trees (e.g., distributed P-trees). Note: PM= P1 xor NP0

15 The Peano Cube of a relation (P-cube)
Suppose we have R(K, A1, A2, A3 ) with each Ai a 2-bit number Construct the cube of all tuple-P-trees for R Form the cube of all RootCountP(t) P-Cube of R P-Cube(A1, A2, A3, rcP(A1,A2,A3)) (rootcounts form the feature attributes and Ai’s form the structure attributes) We can intervalize the RCs, (eg, 4 intervals, [0,0], [1,8], [9,63], [64,), labelled, 00, 01, 10 ,11 respectively). Meta-P-trees of R, by forming basic Ptrees over the P-Cube of R (1 feature attribute and, if we intervalize as above, 4 basic Ptrees). - |HR|  |R| and = iff (A1, A2, A3 ) candidate key for R - what is the relationship to the Haar wavelet low-pass tree? rc P(0,0,3) rc P(1,0,3) rc P(2,0,3) rc P(3,0,3) rc P(0,0,2) rc P(1,0,2) rc P(2,0,2) rc P(3,0,2) 1 5 rc P(0,0,1) 11 rc P(1,0,1) rc P(2,0,1) rc P(3,0,1) 14 5 3 11 rc P313 5 5 17 11 10 rc P312 rc P(0,0,0) rc P(1,0,0) rc P(2,0,0) 00 rc P(3,0,0) 10 rc P311 rc P323 10 01 rc P322 rc P(0,0,0) rc P(1,1,0) 1 rc P(2,1,0) rc P(3,1,0) 01 01 rc P321 rc P333 1 A2 01 00 rc P332 rc P(0,2,0) rc P(1,2,0) rc P(2,2,0) rc P(3,2,0) 1 11 10 00 00 01 10 rc P331 10 00 00 01 10 rc P(0,3,0) rc P(1,3,0) rc P(2,3,0) rc P(3,3,0) 01 11 A3 00 00 01 10 11 A1

16 The P-tree Algebra (Complement, AND, OR, …)
Complement Tree = the Ptree for the bit-complement of the bSQ file) (‘) We will use the “prime” notation. PC-tree of a complement formed by purity-complementing each count. Truth-tree of a complement: by bit-complementing leaves only. Tree Complement = Complement of the tree - each tree entry is complemented. (“) Not the same as the Complement Tree! We will use”double prime” notation. P1 = P0’ / / \ \ // \ \ // \ \ //|\ //|\ //|\ P = P1’ / / \ \ // \ \ // \ \ //|\ //|\ //|\ NP0 = NP1’ / / \ \ // \ \ // \ \ //|\ //|\ //|\ NP1=NP0’=P1” / / \ \ // \ \ // \\ //|\ //|\ //|\ P1V Qid PgVc [] [1] [1.0] [1.3] [2] [2.2] 1101 P0V Qid PgVc [] [1] [1.0] 0001 [1.3] 1101 [2] [2.2] 0010 NP0V Qid PgVc [] [1] [1.0] 1110 [1.3] 0010 [2] [2.2] 1101 NP1V Qid PgVc [] [1] [1.0] 0001 [1.3] 1101 [2] [2.2] 0010 P1” / / \ \ // \ \ // \ \ //|\ //|\ //|\ P0” / / \ \ // \ \ // \ \ //|\ //|\ //|\ NP0” = P0 / / \ \ // \ \ // \ \ //|\ //|\ //|\ NP1” = P1 / / \ \ // \ \ // \\ //|\ //|\ //|\ P1V” Qid PgVc [] [1] [1.0] [1.3] [2] [2.2] 0010 P0V” Qid PgVc [] [1] [1.0] 1110 [1.3] 1101 [2] [2.2] 1101 NP0V” Qid PgVc [] [1] [1.0] 0001 [1.3] 1101 [2] [2.2] 1101 NP1V” Qid PgVc [] [1] [1.0] 0001 [1.3] 0010 [2] [2.2] 1101

17 ANDing (for all Truth-trees, just AND bit-wise)
Pure1-quad-list method: For each operand, list the qids of the pure1 quad’s in depth-first order. Do one multi-cursor scan across the operand lists , for every pure1 quad common to all operands, install it in the result. AND  P1operand1 // \ \ // \\ //|\ //|\ //|\ P0operand1 // \ \ // \ \ //|\ //|\ //|\ NP0operand1 1 // \ \ // \\ //|\ //|\ //|\ NP1operand1 NP0’ 1 // \ \ // \\ //|\ //|\ //|\ bitwise Depth first traversal using 1^1=1, 1^0=0, 0^0=0. AND P1operand2 / / \ \ //|\ 0100 P0op2 = P1’op2 / / \ \ //|\ 1011 NP0operand2 1 / / \ \ 1 11 1 //|\ 0100 NP1operand2 NP0’ 1 / / \ \ //|\ 1011 = P1op1^P1op2 // | \ //|\ //|\ P1op1^P0op2 = P1op1^P1’op2 0 // \ \ //\ \ //|\ //|\ //|\ NP0op1^NP0op2 1 // | \ //|\ //|\ NP0op1^NP0’op2 1 // \ \ /// \ //|\ //|\ //|\

18 Example1: One band, B1, with 3-bit precision
PNP0V11 P1V11 (combined into 1 table) qid NP0 P1 [ ] [01] [10] [01.00] [01.11] [10.10] P12 qid NP0 P1 [ ] [10] [10.11] 0111 P13 qid NP0 P1 [ ] [01] [10] [01.11] 0110 [10.00] 1000 Redundant! Since, at leaf, NP0=P

19 Data Mining in Genomics
There is (will be?) an explosion of gene expression data. Current emphasis is on extracting meaningful information from huge raw data sets. Methods employed are Clustering and Classification Microarray data is most often represented as a relation G(Gid, T1, T2, ., Tn) where Gid is the gene identifier; T1…. Tn are the various treatments (or conditions) and the data values are gene expression levels. We will call this the " Gene Table”. Currently, data-mining techniques concentrate on the Gene table, G(Gid, T1, T2, ., Tn) - specifically, on finding clusters of genes that exhibit similar expression patterns under selected treatments (clustering the gene table).

20 Gene Table …. G4 G3 G2 G1 T4 T3 T2 T1 Treatmt-ID Gene-ID .
P13 [ ] qid NP0 P1 [ ] [01] [10] [01.11] 0110 [10.00] 1000 Using the Universal Relation approach to mining across different Microarray datasets, one can use a consistent Gene-id. Each Microarray will be embedded in a subquadrant. Therefore the data will be sparse and can be handled by Vector Implemented P-trees in which the prefix of the subquadrant can be listed only once:

21 Example1: ANDing to get rc P1(6)
BpQid NP P1 11[ ] 12[ ] 13[ ] 11[01] 13[01] 11[01.00] 11[01.11] 13[01.11] 11[10] 12[10] 13[10] 13[10.00] 11[10.10] 12[10.11] P1(6) = P1(110) = P111^P112^P013 = P11^P12^NP0”13 PM1(110)= P1(110) xor NP01(110) = P11^P12^NP0”13 xor NP011^NP012^P1”13 At [ ]: CNT[ ]=1-cnt*4level =1*42=16 since P1(110)[ ] = 1001^1000^1000=1000 PM1(110)[ ] = P11 ^ P12 ^NP0”13 xor NP011^NP012^P1”13 =1001^1000^ xor ^ 1010 ^1110 = 0010 At [10]: CNT[10]= 1-cnt*4level=0*41=0 since P1(110)[10]= 1101^1110^0001=0000 PM1(110)[10] = P11^P 12 ^NP0”13 xor NP011^NP012^P1”13 =1101^1110^0001 xor 1111^1111^1001= 0000 xor 1001=1001 At [10.00]: CNT=[10.00]1-cnt*4level=3*40=3 since P1(110)[10.00]= 1111^1111^0111=0111 At [10.11]: CNT=[10.11]1-cnt*4level=3*40=3 since P1(110)[10.11]= 1111^0111^1111=0111 Thus, rcP1(6) = = 22 [10] only mixed child [10.00], [10.11] mixed children For P(p)= P( , … , ): At each [..] 1. swap and take bit comp of each [..]NP0V [..]P1V pair corresponding to 0-bits. 2. AND the resulting vector-pairs Result: [..]NP0V(p)[..]P1V(p). To get PMV(p) for the next level, xor the two vectors.

22 ANDing in the NP0V-P1V Vector-Pair Format
For P(p)= P( , … , ) (previous example, P1(6) at qid[ ] ) At each [..] 1. swap and complement each [..]NP0V [..]P1V pair corresponding to 0-bits. Result denoted with * 2. AND the resulting vector-pairs Result: [..]NP0V(p)[..]P1V(p). To get PMV(p) for the next level, 3. xor the two vectors to get [..]PMV(p) pos NP0V P1V - bit NP0V* P1V* - _____________________ NP0V P1V p PMV(p) =

23 Striping P-trees? BpQid NP0 P1 00 11[01.00] 1110 13[10.00] 1000
11[01.00] 13[10.00] BpQid NP0 P1 01 11[01] 13[01] BpQid NP P1 11[ ] 12[ ] 13[ ] 11[01] 13[01] 11[01.00] 11[01.11] 13[01.11] 11[10] 12[10] 13[10] 13[10.00] 11[10.10] 12[10.11] BpQid NP0 P1 C 11[ ] 12[ ] 13[ ] BpQid NP0 P1 10 11[10] 11[10.10] 12[10] 13[10] BpQid NP0 P1 11 11[01.11] 12[10.11] 13[01.11] Assume 5-computer cluster; NodeC, Node00, Node01, Node10, Node11 Send to Nij if qid ends in ij: P11(110) = P111^P112^P013 = P11^P12^NP0” PM1(110) = P11^P12^NP0”13 xor NP011^NP012^P1”13 At NC: CNT[ ]=1-cnt*4level =1*42= since P1(110)[ ]= 1001^1000^1000=1000 PM1(110)[ ] =1001^1000^1000 xor 1111^1010^1110= 0010 At N10: CNT[10]= 1-cnt*4level=0*41=0 since P1(110)[10]= 1101^1110^0001=0000 PM1(110)[10] = 1101^1110^0001 xor 1111^1111^1001= 0000 xor 1001=1001 At N00: CNT=[10.00]1-cnt*4level=3*40=3 since P1(110)[10.00]= 1111^1111^0111=0111 At N11: CNT=[10.11]1-cnt*4level=3*40=3 since P1(110)[10.11]= 1111^0111^1111=0111 Every node sends accumulated CNT to C, where rcP1(6) = = 22 calculated.

24 Striping P-trees? P11 P12 P13 qid NP0 P1 [ ] 1111 1001 [01] 1011 0010
[ ] [01] [10] [01.00] 1110 [01.11] 0010 [10.10] 1101 qid NP0 P1 [ ] [10] [10.11] 0111 qid NP0 P1 [ ] [01] [10] [01.11] 0110 [10.00] 1000 Striping P-trees? Bp qid NP0 P Bp qid NP0 P 11[01] 11[01.00] 1110 11[01.11] 0010 13[01] 13[01.11] 0110 Bp qid NP0 P C 11[ ] 12[ ] 13[ ] Bp qid NP0 P 11[10] 11[10.10] 1101 12[10] 12[10.11] 0111 13[10] 13[10.00] 1000 Bp qid NP0 P Alternatively, Send to Nodeij if qid starts with qid segment, ij. Is this better? How would the AND code be revised? AND performance? OR: Send to Nodeij if the largest qid segment divisible by p is ij eg if p=4: [0]->0; [0.3]->0; [0.3.2]->0; [ ]->2; [ ]->2; [ ]->2; [ ]->2; [ ]->2; [ ]->1 etc. Similar to fanout  4. Implement by multicasting externally only every 4th segment. More generally, choose any increasing sequence, p=(p1..pL), define x p = {max pi  x}, then multicast [s1.s2…sk] --> Node k p

25 Node-C Node-00 Node-01 Node-10 Node-11 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0
B11 Example 1 (bottom-up) Bp qid NP P1 11[00.00] Band, B1, with 3-bit values Bp qid NP0 P1 11[00.00] 11[00.01] Bp qid NP0 P1 11[00.00] 11[00.01] 11[00.10] Bp qid NP P1 11[00.00] 11[00.01] 11[00.10] 11[00.11] Bp qid NP P1 11[00] Node-C Bp qid NP P1 11[] __ 10__ This ends the possibility of a larger pure1 quad. So 00 can be installed in parent as a pure1. Bp qid NP P1 11[00] 11[01.00] Node-00 Bp qid NP P1 11[01.00] Bp qid NP P1 11[01.00] 11[01.01] Mixed leaf quad sent. Also ends possibility parent is pure so it & all siblings are installed as bits in parent. Node-01 Bp qid NP P1 11[01] 11[01.10] Node-10 Bp qid NP P1 11[01.11] Mixed leaf quad sent. Ends parent so install bits in grandparent also Node-11 Bp qid NP P1 11[01.11]

26 Node-C Node-00 Node-01 Node-10 Node-11 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0
B11 Example 1 (bottom-up) Bp qid NP P1 11[10.00] Band, B1, with 3-bit values Bp qid NP P1 11[10.00] 11[10.01] Bp qid NP P1 11[10.00] 11[10.01] 11[10.10] 11[10.11] Ends the possibility of a larger pure1 quad. All can be installed in parent/grandparent as a 1-bit. 10.10 can be installed. Bp qid NP P1 11[11.00] 11[11.01] 11[11.10] 11[11.11] Node-C Bp qid NP P1 11[] Bp qid NP P1 11[11] Node-00 Bp qid NP P1 11[01.00] Node-01 Bp qid NP P1 11[01] Ends quad-11. All can be installed in Parent as a 1-bit. Node-10 Bp qid NP P1 11[10.10] 11[10] Node-11 Bp qid NP P1 11[01.11] Bottom-up bottom-line: Since it is better to use 2-D than 3-D (higher compression), it should be better to use 1-D than 2-D? This should be investigated.

27 X, Y, B1, B2 Example2 B1 B11 B12 B13 B2 B21 B22 B23 Example2

28 Example2: Striping Raster order Peano order __PNP0V_ __P1V__
Band bit-pos [ ] === === === === Raster order Peano order X, Y, B1, B2 X, Y, B11B12B13B21B22B23 x1y1x2y2x3y3 B11B12B13B21B22B23 OR for PNP0 AND for P1 00_PNP0V__ __P1V__ Send B21B22B23 to Node00 01_PNP0V__ __P1V__ Send B11B13 B22B23 to Node01 Bp qid NP0 P1 C 11[ ] 12[ ] 13[ ] 21[ ] 22[ ] 23[ ] Purity Template [ ] 10_PNP0V__ __P1V__ Send B12B13 B21B22B23 to Node10 11_PNP0V__ __P1V__ Send nothing to Node11

29 Example2: striping at Node 00
Bp qid NP0 P 21[ ] 22[ ] 23[ ] PurityTemplate [00] 11[ ] 23[ ] 12[ ] 13[ ] 21[ ] 22[ ] 23[ ] _PNP0V__ __P1___ Band bit-pos [00 ] === === === === x1y1x2y2x3y3B11B12B13 B21B22B23 _PNP0V__ __P1V__ Send nothing to Node00 _PNP0V__ __P1V__ Send [ ]B21B22 to Node01 _PNP0V__ __P1V__ Pages on disk Send nothing to Node10 Bp qid NP0 P 12[ ] 13[ ] 21[ ] 21[ ] 22[ ] 22[ ] 23[ ] 23[ ] 23[ ] 11[ ] _PNP0V__ __P1V__ Send nothing to Node11 P1 Band bit-pos 13 [01.00 ] == 11 10 00 P1 Band bit-pos [10.00 ] == === 11 011 10 110 x1y1x2y2x3y3 B11 B23 x1y1x2y2x3y3 B12B12 B23B23B23 From [01 ] From [10 ] To [01 ]

30 Example2: striping at Node 01
To [00 ] _PNP0V__ __P1___ Band bit-pos [01 ] === === === === Bp qid NP0 P 11[ ] 13[ ] 22[ ] 23[ ] PurityTemplate [01] 21[ ] 22[ ] 23[ ] x1y1x2y2x3y3 B11 B13 B22B23 _PNP0V__ __P1V__ Send [01]B11B23 to Node00 _PNP0V__ __P1V__ Send nothing to Node01 _PNP0V__ __P1V__ Send nothing to Node10 Pages on disk _PNP0V__ __P1V__ Bp qid NP0 P 11[ ] Send nothing to Node11 Bp qid NP0 P 13[ ] Bp qid NP0 P 21[ ] P1 Band bit-pos 12 [00.01 ] == 10 01 P1 Band 2 bit-pos 3 [10.01 ] == 1 x1y1x2y2x3y B21B22 x1y1x2y2x3y B23 Bp qid NP0 P 22[ ] 22[ ] Bp qid NP0 P 23[ ] 23[ ] From [00 ] From [10 ]

31 Example2: striping at Node 10
To [00 ] _PNP0V__ __P1___ Band bit-pos [10 ] === === === === To[01 ] Bp qid NP0 P 12[ ] 13[ ] 21[ ] 22[ ] 23[ ] PurityTemplate [10] x1y1x2y2x3y3 B12B13B21B22B23 _PNP0V__ __P1V__ Send [10]B13B21B23 to Node00 _PNP0V__ __P1V__ Send [10] B23 to Node01 _PNP0V__ __P1V__ Send nothing to Node10 Pages on disk _PNP0V__ __P1V__ Bp qid NP0 P 12[ ] 13[ ] 21[ ] 22[ ] 23[ ] Send [10]B12B21B22 to Node11 To [11 ]

32 Example2: striping at Node11
Bp qid NP0 P 12[ ] 01 22[ ] 10 23[ ] 01 Pages on disk Bp qid NP0 P 12[ ] 01 P1 Band bit-pos 223 [10.11 ] === 010 101 x1y1x2y2x3y3 B B21B22 Bp qid NP0 P 22[ ] 10 Bp qid NP0 P 23[ ] 01 From [10 ]

33 Example2.1 AND at NodeC or [ ]
NP0-pattern NP0 P1 xxxx prime xxxx prime xxxx prime Example2.1 AND at NodeC or [ ] RC(P 101,010) = P11^ P’12^ P13^ P’21^ P22^ P’23 []NP0 1111 0111 ------AND Sum= 8 so far. Invocation= [ ] 101,010 send to Nodes 01, 10 P1-pattern NP0 P1 xxxx prime xxxx prime xxxx prime []P1 1011 0101 0001 ------AND Disk 10 PT[10] Disk 01 PT[01] Disk 00 PT[00] Disk C PT[ ] Bp qid NP0 P1 12[ ] 23[ ] 22[ ] Disk 11 Bp qid NP0 P1 C 11[ ] 12[ ] 13[ ] 21[ ] 22[ ] 23[ ] Bp qid NP0 P1 11[ ] Bp qid NP P1 11[ ] Bp qid NP P1 12[ ] Bp qid NP0 P1 12[ ] Bp qid NP P1 13[ ] Bp qid NP P1 13[ ] Bp qid NP0 P1 13[ ] Bp qid NP P1 21[ ] Bp qid NP P1 21[ ] Bp qid NP0 P1 21[ ] 21[ ] Bp qid NP P1 22[ ] 22[ ] Bp qid NP P1 22[ ] Bp qid NP0 P1 23[ ] 23[01.00] 23[10.00] Bp qid NP0 P1 22[ ] 22[ ] Bp qid NP P1 23[ ] 23[ ] Bp qid NP P1 23[ ]

34 Example2.1 AND at Node01 [ ] 101,010 received Sent to Node00
NP0-pattern NP0 P1 xxxx prime xxxx prime xxxx prime [01] NP0 12 21 AND------ 1000 Invocation= [01] 101,010 Sent to Node00 [ ] 101,010 received P1-pattern NP0 P1 xxxx prime xxxx prime xxxx prime [01] P1 12 21 AND------ 0000 Disk 10 PT[10] Disk 01 PT[01] Disk 00 PT[00] Disk C PT[ ] Bp qid NP0 P1 12[ ] 23[ ] 22[ ] Disk 11 Bp qid NP0 P1 11[ ] Bp qid NP P1 11[ ] Bp qid NP0 P1 C 11[ ] 12[ ] 13[ ] 21[ ] 22[ ] 23[ ] Bp qid NP P1 12[ ] Bp qid NP0 P1 12[ ] Bp qid NP P1 13[ ] Bp qid NP P1 13[ ] Bp qid NP0 P1 13[ ] Bp qid NP P1 21[ ] Bp qid NP P1 21[ ] Bp qid NP0 P1 21[ ] 21[ ] Bp qid NP P1 22[ ] 22[ ] Bp qid NP P1 22[ ] Bp qid NP0 P1 23[ ] 23[01.00] 23[10.00] Bp qid NP0 P1 22[ ] 22[ ] Bp qid NP P1 23[ ] 23[ ] Bp qid NP P1 23[ ]

35 Example2.1 AND at Node10 [ ] 101,010 received Sent nowhere (no mixed)
NP0-pattern NP0 P1 11 xxxx prime 13 xxxx prime 22 xxxx prime [10] NP0 11 AND------ 0000 [ ] 101,010 received Invocation= [10] 101,010 Sent nowhere (no mixed) P1-pattern NP0 P1 xxxx 12 prime xxxx 21 prime xxxx 23 prime [10] P1 11 12 13 21 22 23 AND------ Disk 10 PT[10] Disk 01 PT[01] Disk 00 PT[00] Disk C PT[ ] Bp qid NP0 P1 12[ ] 23[ ] 22[ ] Disk 11 Bp qid NP0 P1 11[ ] Bp qid NP P1 11[ ] Bp qid NP0 P1 C 11[ ] 12[ ] 13[ ] 21[ ] 22[ ] 23[ ] Bp qid NP P1 12[ ] Bp qid NP0 P1 12[ ] Bp qid NP P1 13[ ] Bp qid NP P1 13[ ] Bp qid NP0 P1 13[ ] Bp qid NP P1 21[ ] Bp qid NP P1 21[ ] Bp qid NP0 P1 21[ ] 21[ ] Bp qid NP P1 22[ ] 22[ ] Bp qid NP P1 22[ ] Bp qid NP0 P1 23[ ] 23[01.00] 23[10.00] Bp qid NP0 P1 22[ ] 22[ ] Bp qid NP P1 23[ ] 23[ ] Bp qid NP P1 23[ ]

36 Example2.1 AND at Node00 [01] 101,010 received
Sum=1, sent to NodeC gives a sum total of = 9 P1-pattern P1 11 xxxx 12 prime 13 xxxx 21 prime 22 xxxx 23 prime [01.00] P1 12 13 21 22 AND------ 0100 Disk 10 PT[10] Disk 01 PT[01] Disk 00 PT[00] Disk C PT[ ] Bp qid NP0 P1 12[ ] 23[ ] 22[ ] Disk 11 Bp qid NP0 P1 11[ ] Bp qid NP P1 11[ ] Bp qid NP0 P1 C 11[ ] 12[ ] 13[ ] 21[ ] 22[ ] 23[ ] Bp qid NP P1 12[ ] Bp qid NP0 P1 12[ ] Bp qid NP P1 13[ ] Bp qid NP P1 13[ ] Bp qid NP0 P1 13[ ] Bp qid NP P1 21[ ] Bp qid NP P1 21[ ] Bp qid NP0 P1 21[ ] 21[ ] Bp qid NP P1 22[ ] 22[ ] Bp qid NP P1 22[ ] Bp qid NP0 P1 23[ ] 23[01.00] 23[10.00] Bp qid NP0 P1 22[ ] 22[ ] Bp qid NP P1 23[ ] 23[ ] Bp qid NP P1 23[ ]

37 Example2.2 AND at NodeC or [ ]
P1-pattern NP0 P1 xxxx prime prime xxxx prime xxxx NP0-pattern xxxx prime prime xxxx prime xxxx Example2.2 AND at NodeC or [ ] RC(P 100,101) = P11^ P’12^ P’13^ P21^ P’22^ P23 []NP0 ------AND 0010 Sum= 0 so far. Invocation= [ ] 100, 101 send to Node 10 []P1 ------AND 0000 Disk 10 PT[10] Disk 01 PT[01] Disk 00 PT[00] Disk C PT[ ] Bp qid NP0 P1 12[ ] 23[ ] 22[ ] Disk 11 Bp qid NP0 P1 C 11[ ] 12[ ] 13[ ] 21[ ] 22[ ] 23[ ] Bp qid NP0 P1 11[ ] Bp qid NP P1 11[ ] Bp qid NP P1 12[ ] Bp qid NP0 P1 12[ ] Bp qid NP P1 13[ ] Bp qid NP P1 13[ ] Bp qid NP0 P1 13[ ] Bp qid NP P1 21[ ] Bp qid NP P1 21[ ] Bp qid NP0 P1 21[ ] 21[ ] Bp qid NP P1 22[ ] 22[ ] Bp qid NP P1 22[ ] Bp qid NP0 P1 23[ ] 23[01.00] 23[10.00] Bp qid NP0 P1 22[ ] 22[ ] Bp qid NP P1 23[ ] 23[ ] Bp qid NP P1 23[ ]

38 Example2.2 AND at Node10 [ ] 100,101 received Sent to Node 11
P1-pattern NP0 P1 xxxx prime prime xxxx prime xxxx NP0-pattern xxxx prime prime xxxx prime xxxx [10] NP0 11 12 13 21 22 23 AND------ 0001 [ ] 100,101 received Invocation= [10] 100, 101 Sent to Node 11 [10] P1 11 12 13 21 22 23 AND------ 0000 Disk 10 PT[10] Disk 01 PT[01] Disk 00 PT[00] Disk C PT[ ] Bp qid NP0 P1 12[ ] 23[ ] 22[ ] Disk 11 Bp qid NP0 P1 11[ ] Bp qid NP P1 11[ ] Bp qid NP0 P1 C 11[ ] 12[ ] 13[ ] 21[ ] 22[ ] 23[ ] Bp qid NP P1 12[ ] Bp qid NP0 P1 12[ ] Bp qid NP P1 13[ ] Bp qid NP P1 13[ ] Bp qid NP0 P1 13[ ] Bp qid NP P1 21[ ] Bp qid NP P1 21[ ] Bp qid NP0 P1 21[ ] 21[ ] Bp qid NP P1 22[ ] 22[ ] Bp qid NP P1 22[ ] Bp qid NP0 P1 23[ ] 23[01.00] 23[10.00] Bp qid NP0 P1 22[ ] 22[ ] Bp qid NP P1 23[ ] 23[ ] Bp qid NP P1 23[ ]

39 Example2.2 AND at Node11 [10] 100,101 received
Sum=1, sent to NodeC gives a sum total of 1 [10] P1 12 13 21 AND------ 01 Disk 10 PT[10] Disk 01 PT[01] Disk 00 PT[00] Disk C PT[ ] Bp qid NP0 P1 12[ ] 23[ ] 22[ ] Disk 11 Bp qid NP0 P1 11[ ] Bp qid NP P1 11[ ] Bp qid NP0 P1 C 11[ ] 12[ ] 13[ ] 21[ ] 22[ ] 23[ ] Bp qid NP P1 12[ ] Bp qid NP0 P1 12[ ] Bp qid NP P1 13[ ] Bp qid NP P1 13[ ] Bp qid NP0 P1 13[ ] Bp qid NP P1 21[ ] Bp qid NP P1 21[ ] Bp qid NP0 P1 21[ ] 21[ ] Bp qid NP P1 22[ ] 22[ ] Bp qid NP P1 22[ ] Bp qid NP0 P1 23[ ] 23[01.00] 23[10.00] Bp qid NP0 P1 22[ ] 22[ ] Bp qid NP P1 23[ ] 23[ ] Bp qid NP P1 23[ ]

40 Example2, bottom-up Peano order Bp qid NP0 P1 11[00.00] 1111
11[00.00] 12[00.00] 13[00.00] 21[00.00] 22[00.00] 23[00.00] Example2, bottom-up Peano order x1y1x2y2x3y3 B11B12B13B21B22B23

41 Mixed quads (can be sent to node01)
Bp qid NP0 P1 11[00.00] 11[00.01] 12[00.00] 12[00.01] 13[00.00] 13[00.01] 21[00.00] 21[00.01] 22[00.00] 22[00.01] 23[00.00] 23[00.01] Example2, bottom-up Peano order x1y1x2y2x3y3 B11B12B13B21B22B23 Mixed quads (can be sent to node01) Bp qid NP0 P1 21[00.01] 22[00.01]

42 Mixed quads (sent to node00)
Bp qid NP0 P1 11[00.00] 11[00.01] 11[00.10] 12[00.00] 12[00.01] 12[00.10] 13[00.00] 13[00.01] 13[00.10] 21[00.00] 21[00.01] 21[00.10] 22[00.00] 22[00.01] 22[00.10] 23[00.00] 23[00.01] 23[00.10] Example2, bottom-up Peano order x1y1x2y2x3y3 B11B12B13B21B22B23 Mixed quads (sent to node00) Bp qid NP0 P at 00 23[00] Bp qid NP0 P at 01 21[00.01] 22[00.01]

43 00 quads that are pure are:
Bp qid NP0 P1 11[00.00] 11[00.01] 11[00.10] 11[00.11] 12[00.00] 12[00.01] 12[00.10] 12[00.11] 13[00.00] 13[00.01] 13[00.10] 13[00.11] 21[00.00] 21[00.01] 21[00.10] 21[00.11] 22[00.00] 22[00.01] 22[00.10] 22[00.11] 23[00.00] 23[00.01] 23[00.10] 23[00.11] Example2, bottom-up Peano order x1y1x2y2x3y3 B11B12B13B21B22B23 00 quads that are pure are: Bp qid NP0 P1 11[00] 12[00] 13[00] At 00 Bp qid NP0 P1 23[00] At 01 Bp qid NP0 P1 21[00.01] 22[00.01]


Download ppt "A Spatial Data and Sensor Network Application:"

Similar presentations


Ads by Google