Download presentation
Presentation is loading. Please wait.
1
General Strong Polarization
Madhu Sudan Harvard University Joint work with Jaroslaw Blasiok (Harvard), Venkatesan Guruswami (CMU), Preetum Nakkiran (Harvard) and Atri Rudra (Buffalo) May 18, 2018 Cornell: General Strong Polarization
2
This Talk: Martingales and Polarization
[0,1]-Martingale: Sequence of r.v.s π 0 , π 1 , π 2 ,β¦ π π‘ β 0,1 , πΌ π π‘+1 | π 0 ,β¦, π π‘ = π π‘ Well-studied in algorithms: [MotwaniRaghavan, Β§4.4], [MitzenmacherUpfal, Β§12] E.g., π π‘ = Expected approx. factor of algorithm given first π‘ random choices. Usually study βconcentrationβ E.g. β¦ whp π final β[ π 0 Β±π] Today: Polarization: β¦ whp π final β π,1βπ Why? β Polar codes β¦ β lim π‘ββ π π‘ = π 0 β lim π‘ββ π π‘ = Bern π 0 May 18, 2018 Cornell: General Strong Polarization
3
Main Result: Definition and Theorem
Strong Polarization: (informally) Pr π π‘ β(π,1βπ) β€π if π‘β₯ max π( log 1/π), π( log 1/π) formally βπΎ>0 βπ½<1,π π .π‘. βπ‘ Pr π π‘ β( πΎ π‘ ,1β πΎ π‘ ) β€πβ
π½ π‘ A non-polarizing example: π 0 = 1 2 ; π π‘+1 = π π‘ Β± 2 βπ‘β2 Local Polarization: Variance in the middle: π π‘ β(π,1βπ) βπ>0 βπ>0 π .π‘. βπ‘, π π‘ β π,1βπ βπππ π π‘+1 π π‘ β₯π Suction at the ends: π π‘ β π,1βπ βπ>0, βπ<β, βπ>0 π .π‘. π π‘ <πβ Pr π π‘+1 < π π‘ π β₯π Theorem: Local Polarization β Strong Polarization. Both definitions qualitative! βlow endβ condition. Similar condition for high end May 18, 2018 Cornell: General Strong Polarization
4
Cornell: General Strong Polarization
Rest of the talk Background/Motivation: The Shannon Capacity Challenge Resolution by [Arikanβ08], [Guruswami-Xiaβ13], [Hassani,Alishahi,Urbankeβ13]: Polar Codes! Key ideas: Polar Codes & Arikan-Martingale. Implications of Weak/Strong Polarization. Our Contributions: Simplification & Generalization Local Polarization β Strong Polarization Arikan-Martingale Locally Polarizes (generally) May 18, 2018 Cornell: General Strong Polarization
5
Shannon and Channel Capacity
Shannon [β48]: For every (noisy) channel of communication, β capacity πΆ s.t. communication at rate π
<πΆ is possible and π
>πΆ is not. Needs lot of formalization β omitted. Example: Acts independently on bits Capacity =1 β π»(π) ; π»(π) = binary entropy! π» π =πβ
log 1 π + 1βπ β
log 1 1βπ Rate? Encode: π½ 2 π π β π½ 2 π lim πββ π π π β₯π
πβ π½ 2 π w.p. 1βπ 1βπ w.p. π π΅ππΆ(π) May 18, 2018 Cornell: General Strong Polarization
6
βAchievingβ Channel Capacity
Commonly used phrase. Many mathematical interpretations. Some possibilities: How small can π be? Get π
>πΆβπ with polytime algorithms? [Luby et al.β95] Make running time poly π π ? Open till 2008 Arikanβ08: Invented βPolar Codesβ β¦ Final resolution: Guruswami+Xiaβ13, Hassani+Alishahi+Urbankeβ13 β Strong analysis Shannon β48 : π=π πΆβπ
β2 Forney β66 :time =ππππ¦ π, π 2 May 18, 2018 Cornell: General Strong Polarization
7
Polar Codes and Polarization
Arikan: Defined Polar Codes, one for every π‘ Associated Martingale π 0 ,β¦, π π‘ ,β¦ π‘th code: Length π= 2 π‘ If Pr π π‘ β πΎ,1βπΏ β€π then π‘th code is π+πΏ -close to capacity, and Pr π·πππππ πΈπππππ π +πππππ β π β€πβ
πΎ Need πΎ=π 1 π (strong polarization βπΎ=πππ(π)) Need π=1/ π Ξ©(1) (β strong polarization) May 18, 2018 Cornell: General Strong Polarization
8
Context for todayβs talk
[Arikanβ08]: Martingale associated to general class of codes. Martingale polarizes (weakly) implies code achieves capacity (weakly) Martingale polarizes weakly for entire class. [GXβ13, HAUβ13]: Strong polarization for one specific code. Why so specific? Bottleneck: Strong Polarization Rest of talk: Polar codes, Martingale and Strong Polarization May 18, 2018 Cornell: General Strong Polarization
9
Lesson 0: Compression β Coding
Linear Compression Scheme: π»,π· for compression scheme for bern π π if Linear map π»: π½ 2 π β π½ 2 π Pr πβΌbern π π π· π»β
π β π =π 1 Hopefully π π β€π» π +π Compression β Coding Let π» β₯ be such that π»β
π» β₯ =0; Encoder: πβ¦ π» β₯ β
π Error-Corrector: π= π» β₯ β
π+πβ¦πβπ· π»β
π = π€.π. 1βπ(1) π» β₯ β
π May 18, 2018 Cornell: General Strong Polarization
10
Question: How to compress?
Arikanβs key idea: Start with 2Γ2 βPolarization Transformβ: π,π β π+π,π Invertible β so does nothing? If π,π independent, then π+π βmore randomβ than either π | π+π βless randomβ than either Iterate (ignoring conditioning) End with bits that are almost random, or almost determined (by others). Output βtotally random partβ to get compression! May 18, 2018 Cornell: General Strong Polarization
11
Information Theory Basics
Entropy: Defn: for random variable πβΞ©, π» π = π₯βΞ© π π₯ log 1 π π₯ where π π₯ = Pr π=π₯ Bounds: 0β€π» π β€ log Ξ© Conditional Entropy Defn: for jointly distributed π,π π» π π = π¦ π π¦ π»(π|π=π¦) Chain Rule: π» π,π =π» π +π»(π|π) Conditioning does not increase entropy: π» π π β€π»(π) Equality β Independence: π» π π =π» π β πβ₯π May 18, 2018 Cornell: General Strong Polarization
12
Iteration by Example: π΄,π΅,πΆ,π· β π΄+π΅+πΆ+π·,π΅+π·,πΆ+π·, π·
πΈ,πΉ,πΊ,π» β πΈ+πΉ+πΊ+π»,πΉ+π»,πΊ+π»,π» π΅+π· πΉ+π» π΅+π·+πΉ+π» π» π΅+π· π΄+π΅+πΆ+π·) π» π΅+π·+πΉ+π»| π΄+π΅+πΆ+π·, πΈ+πΉ+πΊ+π» π» πΉ+π»| π΄+π΅+πΆ+π·, πΈ+πΉ+πΊ+π», π΅+π·+πΉ+π» π» πΉ+π» πΈ+πΉ+πΊ+π») May 18, 2018 Cornell: General Strong Polarization
13
The Polarization Butterfly
π π π,π = π π 2 π+π , π π 2 π Polarization ββπβ π π» π π βπ π π β0 π β€ π» π +π β
π π 1 π 2 π π 2 π π 2 +1 π π 2 +2 π π π 1 + π π 2 +1 π 2 + π π 2 +2 π π 2 + π π π π 2 +1 π π 2 +2 π π π 1 π 2 π π 2 π π 2 +1 π π 2 +2 π π π Compression πΈ π = π π π π Encoding time =π π log π (given π) π To be shown: 1. Decoding = π π log π 2. Polarization! May 18, 2018 Cornell: General Strong Polarization
14
The Polarization Butterfly: Decoding
Decoding idea: Given π, π π = π π π,π Compute π+πβΌBern 2πβ2 π 2 Determine πβΌ ? π 1 π 2 π π 2 π π 2 +1 π π 2 +2 π π π 1 + π π 2 +1 π 1 π 2 π π 2 π π 2 +1 π π 2 +2 π π π 2 + π π 2 +2 π|π+πβΌ π Bern( π π ) Key idea: Stronger induction! - non-identical product distribution π π 2 + π π π π 2 +1 Decoding Algorithm: Given π, π π = π π π,π , π 1 ,β¦, π π Compute π 1 ,.. π π 2 β π 1 β¦ π π Determine π+π=π· π π + , π 1 β¦ π π 2 Compute π 1 β¦ π π 2 β π 1 β¦ π π ;π+π Determine π=π· π π β , π 1 β¦ π π 2 π π 2 +2 π π May 18, 2018 Cornell: General Strong Polarization
15
Polarization? Martingale?
Idea: Follow π π‘ = π» π π,π‘ π <π,π‘ for random π π 1 π 2 π π 2 π π 2 +1 π π 2 +2 π π π 1 + π π 2 +1 π 1 π 2 π π 2 π π 2 +1 π π 2 +2 π π Martingale? π 2 + π π 2 +2 π π,0 π π,1 β¦ Z π,π‘ β¦ π π, log π π π,π‘ π π,π‘ π π,π‘+1 π π,π‘+1 π π 2 + π π π π 2 +1 π π 2 +2 π π‘ canβt distinguish π=π from π=π π» π π,π‘ , π π,π‘ =π» π π,π‘+1 , π π,π‘+1 Chain Rule β¦ βπΌ π π‘+1 π π‘ = π π‘ π π May 18, 2018 Cornell: General Strong Polarization
16
Cornell: General Strong Polarization
Remaining Tasks: Prove that π π‘ βπ» π π,π‘ π <π,π‘ polarizes locally Prove that Local polarization β Strong Polarization. Recall Strong Polarization: (informally) Pr π π‘ β(π,1βπ) β€π if π‘β₯ max π( log 1/π), π( log 1/π) formally βπΎ>0 βπ½<1,π π .π‘. βπ‘ Pr π π‘ β( πΎ π‘ ,1β πΎ π‘ ) β€πβ
π½ π‘ Local Polarization: Variance in the middle: π π‘ β(π,1βπ) βπ>0 βπ>0 π .π‘. βπ‘, π π‘ β π,1βπ βπππ π π‘+1 π π‘ β₯π Suction at the ends: π π‘ β π,1βπ βπ>0, βπ<β, βπ>0 π .π‘. π π‘ <πβ Pr π π‘+1 < π π‘ π β₯π May 18, 2018 Cornell: General Strong Polarization
17
Local β (Global) Strong Polarization
Step 1: Medium Polarization: βπΌ,π½<1 Pr π π‘ β π½ π‘ ,1β π½ π‘ β€ πΌ π‘ Proof: Potential Ξ¦ π‘ =πΌ min π π‘ , 1β π π‘ Variance+Suction β βπ<1 s.t. Ξ¦ π‘ β€πβ
π π‘β1 (Aside: Why π π‘ ? Clearly π π‘ wonβt work. And π π‘ 2 increases!) β Ξ¦ π‘ β€ π π‘ β Pr π π‘ β π½ π‘ ,1β π½ π‘ β€ π π½ π‘ May 18, 2018 Cornell: General Strong Polarization
18
Local β (Global) Strong Polarization
Step 1: Medium Polarization: βπΌ,π½<1 Pr π π‘ β π½ π‘ ,1β π½ π‘ β€ πΌ π‘ Step 2: Medium Polarization + π‘-more steps β Strong Polarization: Proof: Assume π 0 β€ πΌ π‘ ; Want π π‘ β€ πΎ π‘ w.p. 1 βπ πΌ 1 π‘ Pick π large & π s.t. Pr π π < π πβ1 π | π πβ1 β€π β₯π 2.1: Pr βπ π .π‘. π π β₯π β€ π β1 β
πΌ π‘ (Doobβs Inequality) 2.2: Let π π = log π π ; Assuming π π β€π for all π π π β π πβ1 β€β log π w.p. β₯π; & β₯π w.p. β€ 2 βπ . πΌxp π π‘ β€βπ‘ log π π +1 β€2π‘β
log πΎ Concentration! Pr π π‘ β₯π‘β
log πΎ β€ πΌ 2 π‘ QED! May 18, 2018 Cornell: General Strong Polarization
19
Polarization of Arikan Martingale
Ignoring conditioning: π π‘ =π» π β π π‘+1 =π» 2πβ2 π 2 w.p. Β½ =2π» π βπ» 2πβ2 π 2 w.p. Β½ Variance in the middle: Continuity of π» β
and separation of 2πβ2 π 2 from π Suction at high end: π π‘ =1βπ β π π‘+1 =1β π(π 2 ) w.p. Β½ Suction at low end: π π‘ =π» π β π π‘+1 =π» π log π w.p. Β½ May 18, 2018 Cornell: General Strong Polarization
20
General Strong Polarization?
So far: π π = π» 2 ββ for π» 2 = What about other matrices? E.g., π π = π» 3 ββ for π» 3 = Open till our work! Necessary conditions: π» invertible, not-lower-triangular Our work: Necessary conditions suffice (for local polarization)! May 18, 2018 Cornell: General Strong Polarization
21
Cornell: General Strong Polarization
Conclusion Simple General Analysis of Strong Polarization But main reason to study general polarization: Maybe some matrices polarize even faster! This analysis does not get us there. But hopefully following the (simpler) steps in specific cases can lead to improvements. May 18, 2018 Cornell: General Strong Polarization
22
Cornell: General Strong Polarization
Thank You! May 18, 2018 Cornell: General Strong Polarization
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.