Presentation is loading. Please wait.

Presentation is loading. Please wait.

General Strong Polarization

Similar presentations


Presentation on theme: "General Strong Polarization"β€” Presentation transcript:

1 General Strong Polarization
Madhu Sudan Harvard University Joint work with Jaroslaw Blasiok (Harvard), Venkatesan Guruswami (CMU), Preetum Nakkiran (Harvard) and Atri Rudra (Buffalo) May 18, 2018 Cornell: General Strong Polarization

2 This Talk: Martingales and Polarization
[0,1]-Martingale: Sequence of r.v.s 𝑋 0 , 𝑋 1 , 𝑋 2 ,… 𝑋 𝑑 ∈ 0,1 , 𝔼 𝑋 𝑑+1 | 𝑋 0 ,…, 𝑋 𝑑 = 𝑋 𝑑 Well-studied in algorithms: [MotwaniRaghavan, Β§4.4], [MitzenmacherUpfal, Β§12] E.g., 𝑋 𝑑 = Expected approx. factor of algorithm given first 𝑑 random choices. Usually study β€œconcentration” E.g. … whp 𝑋 final ∈[ 𝑋 0 Β±πœ–] Today: Polarization: … whp 𝑋 final βˆ‰ πœ–,1βˆ’πœ– Why? – Polar codes … ⇔ lim π‘‘β†’βˆž 𝑋 𝑑 = 𝑋 0 ⇔ lim π‘‘β†’βˆž 𝑋 𝑑 = Bern 𝑋 0 May 18, 2018 Cornell: General Strong Polarization

3 Main Result: Definition and Theorem
Strong Polarization: (informally) Pr 𝑋 𝑑 ∈(𝜏,1βˆ’πœ) β‰€πœ– if 𝑑β‰₯ max 𝑂( log 1/πœ–), π‘œ( log 1/𝜏) formally βˆ€π›Ύ>0 βˆƒπ›½<1,𝑐 𝑠.𝑑. βˆ€π‘‘ Pr 𝑋 𝑑 ∈( 𝛾 𝑑 ,1βˆ’ 𝛾 𝑑 ) ≀𝑐⋅ 𝛽 𝑑 A non-polarizing example: 𝑋 0 = 1 2 ; 𝑋 𝑑+1 = 𝑋 𝑑 Β± 2 βˆ’π‘‘βˆ’2 Local Polarization: Variance in the middle: 𝑋 𝑑 ∈(𝜏,1βˆ’πœ) βˆ€πœ>0 βˆƒπœŽ>0 𝑠.𝑑. βˆ€π‘‘, 𝑋 𝑑 ∈ 𝜏,1βˆ’πœ β‡’π‘‰π‘Žπ‘Ÿ 𝑋 𝑑+1 𝑋 𝑑 β‰₯𝜎 Suction at the ends: 𝑋 𝑑 βˆ‰ 𝜏,1βˆ’πœ βˆƒπœƒ>0, βˆ€π‘<∞, βˆƒπœ>0 𝑠.𝑑. 𝑋 𝑑 <πœβ‡’ Pr 𝑋 𝑑+1 < 𝑋 𝑑 𝑐 β‰₯πœƒ Theorem: Local Polarization β‡’ Strong Polarization. Both definitions qualitative! β€œlow end” condition. Similar condition for high end May 18, 2018 Cornell: General Strong Polarization

4 Cornell: General Strong Polarization
Rest of the talk Background/Motivation: The Shannon Capacity Challenge Resolution by [Arikan’08], [Guruswami-Xia’13], [Hassani,Alishahi,Urbanke’13]: Polar Codes! Key ideas: Polar Codes & Arikan-Martingale. Implications of Weak/Strong Polarization. Our Contributions: Simplification & Generalization Local Polarization β‡’ Strong Polarization Arikan-Martingale Locally Polarizes (generally) May 18, 2018 Cornell: General Strong Polarization

5 Shannon and Channel Capacity
Shannon [β€˜48]: For every (noisy) channel of communication, βˆƒ capacity 𝐢 s.t. communication at rate 𝑅<𝐢 is possible and 𝑅>𝐢 is not. Needs lot of formalization – omitted. Example: Acts independently on bits Capacity =1 – 𝐻(𝑝) ; 𝐻(𝑝) = binary entropy! 𝐻 𝑝 =𝑝⋅ log 1 𝑝 + 1βˆ’π‘ β‹… log 1 1βˆ’π‘ Rate? Encode: 𝔽 2 π‘˜ 𝑛 β†’ 𝔽 2 𝑛 lim π‘›β†’βˆž π‘˜ 𝑛 𝑛 β‰₯𝑅 π‘‹βˆˆ 𝔽 2 𝑋 w.p. 1βˆ’π‘ 1βˆ’π‘‹ w.p. 𝑝 𝐡𝑆𝐢(𝑝) May 18, 2018 Cornell: General Strong Polarization

6 β€œAchieving” Channel Capacity
Commonly used phrase. Many mathematical interpretations. Some possibilities: How small can 𝑛 be? Get 𝑅>πΆβˆ’πœ– with polytime algorithms? [Luby et al.’95] Make running time poly 𝑛 πœ– ? Open till 2008 Arikan’08: Invented β€œPolar Codes” … Final resolution: Guruswami+Xia’13, Hassani+Alishahi+Urbanke’13 – Strong analysis Shannon β€˜48 : 𝑛=𝑂 πΆβˆ’π‘… βˆ’2 Forney β€˜66 :time =π‘π‘œπ‘™π‘¦ 𝑛, πœ– 2 May 18, 2018 Cornell: General Strong Polarization

7 Polar Codes and Polarization
Arikan: Defined Polar Codes, one for every 𝑑 Associated Martingale 𝑋 0 ,…, 𝑋 𝑑 ,… 𝑑th code: Length 𝑛= 2 𝑑 If Pr 𝑋 𝑑 ∈ 𝛾,1βˆ’π›Ώ β‰€πœ– then 𝑑th code is πœ–+𝛿 -close to capacity, and Pr π·π‘’π‘π‘œπ‘‘π‘’ πΈπ‘›π‘π‘œπ‘‘π‘’ π‘š +π‘’π‘Ÿπ‘Ÿπ‘œπ‘Ÿ β‰ π‘š ≀𝑛⋅𝛾 Need 𝛾=π‘œ 1 𝑛 (strong polarization ⇒𝛾=𝑛𝑒𝑔(𝑛)) Need πœ–=1/ 𝑛 Ξ©(1) (⇐ strong polarization) May 18, 2018 Cornell: General Strong Polarization

8 Context for today’s talk
[Arikan’08]: Martingale associated to general class of codes. Martingale polarizes (weakly) implies code achieves capacity (weakly) Martingale polarizes weakly for entire class. [GX’13, HAU’13]: Strong polarization for one specific code. Why so specific? Bottleneck: Strong Polarization Rest of talk: Polar codes, Martingale and Strong Polarization May 18, 2018 Cornell: General Strong Polarization

9 Lesson 0: Compression β‡’ Coding
Linear Compression Scheme: 𝐻,𝐷 for compression scheme for bern 𝑝 𝑛 if Linear map 𝐻: 𝔽 2 𝑛 β†’ 𝔽 2 π‘š Pr π‘βˆΌbern 𝑝 𝑛 𝐷 𝐻⋅𝑍 ≠𝑍 =π‘œ 1 Hopefully π‘š 𝑛 ≀𝐻 𝑝 +πœ– Compression β‡’ Coding Let 𝐻 βŠ₯ be such that 𝐻⋅𝐻 βŠ₯ =0; Encoder: 𝑋↦ 𝐻 βŠ₯ ⋅𝑋 Error-Corrector: π‘Œ= 𝐻 βŠ₯ ⋅𝑋+πœ‚β†¦π‘Œβˆ’π· π»β‹…π‘Œ = 𝑀.𝑝. 1βˆ’π‘œ(1) 𝐻 βŠ₯ ⋅𝑋 May 18, 2018 Cornell: General Strong Polarization

10 Question: How to compress?
Arikan’s key idea: Start with 2Γ—2 β€œPolarization Transform”: π‘ˆ,𝑉 β†’ π‘ˆ+𝑉,𝑉 Invertible – so does nothing? If π‘ˆ,𝑉 independent, then π‘ˆ+𝑉 β€œmore random” than either 𝑉 | π‘ˆ+𝑉 β€œless random” than either Iterate (ignoring conditioning) End with bits that are almost random, or almost determined (by others). Output β€œtotally random part” to get compression! May 18, 2018 Cornell: General Strong Polarization

11 Information Theory Basics
Entropy: Defn: for random variable π‘‹βˆˆΞ©, 𝐻 𝑋 = π‘₯∈Ω 𝑝 π‘₯ log 1 𝑝 π‘₯ where 𝑝 π‘₯ = Pr 𝑋=π‘₯ Bounds: 0≀𝐻 𝑋 ≀ log Ξ© Conditional Entropy Defn: for jointly distributed 𝑋,π‘Œ 𝐻 𝑋 π‘Œ = 𝑦 𝑝 𝑦 𝐻(𝑋|π‘Œ=𝑦) Chain Rule: 𝐻 𝑋,π‘Œ =𝐻 𝑋 +𝐻(π‘Œ|𝑋) Conditioning does not increase entropy: 𝐻 𝑋 π‘Œ ≀𝐻(𝑋) Equality ⇔ Independence: 𝐻 𝑋 π‘Œ =𝐻 𝑋 ⇔ 𝑋βŠ₯π‘Œ May 18, 2018 Cornell: General Strong Polarization

12 Iteration by Example: 𝐴,𝐡,𝐢,𝐷 β†’ 𝐴+𝐡+𝐢+𝐷,𝐡+𝐷,𝐢+𝐷, 𝐷
𝐸,𝐹,𝐺,𝐻 β†’ 𝐸+𝐹+𝐺+𝐻,𝐹+𝐻,𝐺+𝐻,𝐻 𝐡+𝐷 𝐹+𝐻 𝐡+𝐷+𝐹+𝐻 𝐻 𝐡+𝐷 𝐴+𝐡+𝐢+𝐷) 𝐻 𝐡+𝐷+𝐹+𝐻| 𝐴+𝐡+𝐢+𝐷, 𝐸+𝐹+𝐺+𝐻 𝐻 𝐹+𝐻| 𝐴+𝐡+𝐢+𝐷, 𝐸+𝐹+𝐺+𝐻, 𝐡+𝐷+𝐹+𝐻 𝐻 𝐹+𝐻 𝐸+𝐹+𝐺+𝐻) May 18, 2018 Cornell: General Strong Polarization

13 The Polarization Butterfly
𝑃 𝑛 π‘ˆ,𝑉 = 𝑃 𝑛 2 π‘ˆ+𝑉 , 𝑃 𝑛 2 𝑉 Polarization β‡’βˆƒπ‘†βŠ† 𝑛 𝐻 π‘Š 𝑛 βˆ’π‘† π‘Š 𝑆 β†’0 𝑆 ≀ 𝐻 𝑝 +πœ– ⋅𝑛 𝑍 1 𝑍 2 𝑍 𝑛 2 𝑍 𝑛 2 +1 𝑍 𝑛 2 +2 𝑍 𝑛 𝑍 1 + 𝑍 𝑛 2 +1 𝑍 2 + 𝑍 𝑛 2 +2 𝑍 𝑛 2 + 𝑍 𝑛 𝑍 𝑛 2 +1 𝑍 𝑛 2 +2 𝑍 𝑛 π‘Š 1 π‘Š 2 π‘Š 𝑛 2 π‘Š 𝑛 2 +1 π‘Š 𝑛 2 +2 π‘Š 𝑛 π‘ˆ Compression 𝐸 𝑍 = 𝑃 𝑛 𝑍 𝑆 Encoding time =𝑂 𝑛 log 𝑛 (given 𝑆) 𝑉 To be shown: 1. Decoding = 𝑂 𝑛 log 𝑛 2. Polarization! May 18, 2018 Cornell: General Strong Polarization

14 The Polarization Butterfly: Decoding
Decoding idea: Given 𝑆, π‘Š 𝑆 = 𝑃 𝑛 π‘ˆ,𝑉 Compute π‘ˆ+π‘‰βˆΌBern 2π‘βˆ’2 𝑝 2 Determine π‘‰βˆΌ ? 𝑍 1 𝑍 2 𝑍 𝑛 2 𝑍 𝑛 2 +1 𝑍 𝑛 2 +2 𝑍 𝑛 𝑍 1 + 𝑍 𝑛 2 +1 π‘Š 1 π‘Š 2 π‘Š 𝑛 2 π‘Š 𝑛 2 +1 π‘Š 𝑛 2 +2 π‘Š 𝑛 𝑍 2 + 𝑍 𝑛 2 +2 𝑉|π‘ˆ+π‘‰βˆΌ 𝑖 Bern( π‘Ÿ 𝑖 ) Key idea: Stronger induction! - non-identical product distribution 𝑍 𝑛 2 + 𝑍 𝑛 𝑍 𝑛 2 +1 Decoding Algorithm: Given 𝑆, π‘Š 𝑆 = 𝑃 𝑛 π‘ˆ,𝑉 , 𝑝 1 ,…, 𝑝 𝑛 Compute π‘ž 1 ,.. π‘ž 𝑛 2 ← 𝑝 1 … 𝑝 𝑛 Determine π‘ˆ+𝑉=𝐷 π‘Š 𝑆 + , π‘ž 1 … π‘ž 𝑛 2 Compute π‘Ÿ 1 … π‘Ÿ 𝑛 2 ← 𝑝 1 … 𝑝 𝑛 ;π‘ˆ+𝑉 Determine 𝑉=𝐷 π‘Š 𝑆 βˆ’ , π‘Ÿ 1 … π‘Ÿ 𝑛 2 𝑍 𝑛 2 +2 𝑍 𝑛 May 18, 2018 Cornell: General Strong Polarization

15 Polarization? Martingale?
Idea: Follow 𝑋 𝑑 = 𝐻 𝑍 𝑖,𝑑 𝑍 <𝑖,𝑑 for random 𝑖 𝑍 1 𝑍 2 𝑍 𝑛 2 𝑍 𝑛 2 +1 𝑍 𝑛 2 +2 𝑍 𝑛 𝑍 1 + 𝑍 𝑛 2 +1 π‘Š 1 π‘Š 2 π‘Š 𝑛 2 π‘Š 𝑛 2 +1 π‘Š 𝑛 2 +2 π‘Š 𝑛 Martingale? 𝑍 2 + 𝑍 𝑛 2 +2 𝑍 𝑖,0 𝑍 𝑖,1 … Z 𝑖,𝑑 … 𝑍 𝑖, log 𝑛 𝑍 𝑗,𝑑 𝑍 π‘˜,𝑑 𝑍 𝑗,𝑑+1 𝑍 π‘˜,𝑑+1 𝑍 𝑛 2 + 𝑍 𝑛 𝑍 𝑛 2 +1 𝑍 𝑛 2 +2 𝑋 𝑑 can’t distinguish 𝑖=𝑗 from 𝑖=π‘˜ 𝐻 𝑍 𝑗,𝑑 , 𝑍 π‘˜,𝑑 =𝐻 𝑍 𝑗,𝑑+1 , 𝑍 π‘˜,𝑑+1 Chain Rule … ⇒𝔼 𝑋 𝑑+1 𝑋 𝑑 = 𝑋 𝑑 𝑍 𝑛 May 18, 2018 Cornell: General Strong Polarization

16 Cornell: General Strong Polarization
Remaining Tasks: Prove that 𝑋 𝑑 ≝𝐻 𝑍 𝑖,𝑑 𝑍 <𝑖,𝑑 polarizes locally Prove that Local polarization β‡’ Strong Polarization. Recall Strong Polarization: (informally) Pr 𝑋 𝑑 ∈(𝜏,1βˆ’πœ) β‰€πœ– if 𝑑β‰₯ max 𝑂( log 1/πœ–), π‘œ( log 1/𝜏) formally βˆ€π›Ύ>0 βˆƒπ›½<1,𝑐 𝑠.𝑑. βˆ€π‘‘ Pr 𝑋 𝑑 ∈( 𝛾 𝑑 ,1βˆ’ 𝛾 𝑑 ) ≀𝑐⋅ 𝛽 𝑑 Local Polarization: Variance in the middle: 𝑋 𝑑 ∈(𝜏,1βˆ’πœ) βˆ€πœ>0 βˆƒπœŽ>0 𝑠.𝑑. βˆ€π‘‘, 𝑋 𝑑 ∈ 𝜏,1βˆ’πœ β‡’π‘‰π‘Žπ‘Ÿ 𝑋 𝑑+1 𝑋 𝑑 β‰₯𝜎 Suction at the ends: 𝑋 𝑑 βˆ‰ 𝜏,1βˆ’πœ βˆƒπœƒ>0, βˆ€π‘<∞, βˆƒπœ>0 𝑠.𝑑. 𝑋 𝑑 <πœβ‡’ Pr 𝑋 𝑑+1 < 𝑋 𝑑 𝑐 β‰₯πœƒ May 18, 2018 Cornell: General Strong Polarization

17 Local β‡’ (Global) Strong Polarization
Step 1: Medium Polarization: βˆƒπ›Ό,𝛽<1 Pr 𝑋 𝑑 ∈ 𝛽 𝑑 ,1βˆ’ 𝛽 𝑑 ≀ 𝛼 𝑑 Proof: Potential Ξ¦ 𝑑 =𝔼 min 𝑋 𝑑 , 1βˆ’ 𝑋 𝑑 Variance+Suction β‡’ βˆƒπœ‚<1 s.t. Ξ¦ 𝑑 β‰€πœ‚β‹… πœ™ π‘‘βˆ’1 (Aside: Why 𝑋 𝑑 ? Clearly 𝑋 𝑑 won’t work. And 𝑋 𝑑 2 increases!) β‡’ Ξ¦ 𝑑 ≀ πœ‚ 𝑑 β‡’ Pr 𝑋 𝑑 ∈ 𝛽 𝑑 ,1βˆ’ 𝛽 𝑑 ≀ πœ‚ 𝛽 𝑑 May 18, 2018 Cornell: General Strong Polarization

18 Local β‡’ (Global) Strong Polarization
Step 1: Medium Polarization: βˆƒπ›Ό,𝛽<1 Pr 𝑋 𝑑 ∈ 𝛽 𝑑 ,1βˆ’ 𝛽 𝑑 ≀ 𝛼 𝑑 Step 2: Medium Polarization + 𝑑-more steps β‡’ Strong Polarization: Proof: Assume 𝑋 0 ≀ 𝛼 𝑑 ; Want 𝑋 𝑑 ≀ 𝛾 𝑑 w.p. 1 βˆ’π‘‚ 𝛼 1 𝑑 Pick 𝑐 large & 𝜏 s.t. Pr 𝑋 𝑖 < 𝑋 π‘–βˆ’1 𝑐 | 𝑋 π‘–βˆ’1 β‰€πœ β‰₯πœƒ 2.1: Pr βˆƒπ‘– 𝑠.𝑑. 𝑋 𝑖 β‰₯𝜏 ≀ 𝜏 βˆ’1 β‹… 𝛼 𝑑 (Doob’s Inequality) 2.2: Let π‘Œ 𝑖 = log 𝑋 𝑖 ; Assuming 𝑋 𝑖 β‰€πœ for all 𝑖 π‘Œ 𝑖 βˆ’ π‘Œ π‘–βˆ’1 β‰€βˆ’ log 𝑐 w.p. β‰₯πœƒ; & β‰₯π‘˜ w.p. ≀ 2 βˆ’π‘˜ . 𝔼xp π‘Œ 𝑑 β‰€βˆ’π‘‘ log 𝑐 πœƒ +1 ≀2𝑑⋅ log 𝛾 Concentration! Pr π‘Œ 𝑑 β‰₯𝑑⋅ log 𝛾 ≀ 𝛼 2 𝑑 QED! May 18, 2018 Cornell: General Strong Polarization

19 Polarization of Arikan Martingale
Ignoring conditioning: 𝑋 𝑑 =𝐻 𝑝 β‡’ 𝑋 𝑑+1 =𝐻 2π‘βˆ’2 𝑝 2 w.p. Β½ =2𝐻 𝑝 βˆ’π» 2π‘βˆ’2 𝑝 2 w.p. Β½ Variance in the middle: Continuity of 𝐻 β‹… and separation of 2π‘βˆ’2 𝑝 2 from 𝑝 Suction at high end: 𝑋 𝑑 =1βˆ’πœ– β‡’ 𝑋 𝑑+1 =1βˆ’ 𝑂(πœ– 2 ) w.p. Β½ Suction at low end: 𝑋 𝑑 =𝐻 𝑝 β‡’ 𝑋 𝑑+1 =𝐻 𝑝 log 𝑝 w.p. Β½ May 18, 2018 Cornell: General Strong Polarization

20 General Strong Polarization?
So far: 𝑃 𝑛 = 𝐻 2 βŠ—β„“ for 𝐻 2 = What about other matrices? E.g., 𝑃 𝑛 = 𝐻 3 βŠ—β„“ for 𝐻 3 = Open till our work! Necessary conditions: 𝐻 invertible, not-lower-triangular Our work: Necessary conditions suffice (for local polarization)! May 18, 2018 Cornell: General Strong Polarization

21 Cornell: General Strong Polarization
Conclusion Simple General Analysis of Strong Polarization But main reason to study general polarization: Maybe some matrices polarize even faster! This analysis does not get us there. But hopefully following the (simpler) steps in specific cases can lead to improvements. May 18, 2018 Cornell: General Strong Polarization

22 Cornell: General Strong Polarization
Thank You! May 18, 2018 Cornell: General Strong Polarization


Download ppt "General Strong Polarization"

Similar presentations


Ads by Google