Presentation is loading. Please wait.

Presentation is loading. Please wait.

Circles in the Coordinate Plane

Similar presentations


Presentation on theme: "Circles in the Coordinate Plane"— Presentation transcript:

1 Circles in the Coordinate Plane
GEOMETRY LESSON 11-5 Pages Exercises 1. (x – 2)2 + (y + 8)2 = 81 2. x2 + (y – 3)2 = 49 3. (x – 0.2)2 + (y – 1.1)2 = 0.16 4. (x – 5)2 + (y + 1)2 = 144 5. (x + 6)2 + (y – 3)2 = 64 6. (x + 9)2 + (y + 4)2 = 5 7. x2 + y2 = 16 8. (x + 4)2 + y2 = 9 9. (x + 1)2 + (y + 1)2 = 1 10. (x + 2)2 + (y – 6)2 = 16 11. (x – 1)2 + (y – 2)2 = 17 12. (x – 7)2 + (y + 2)2 = 52 13. (x + 10)2 + (y + 5)2 = 125 14. (x – 6)2 + (y – 5)2 = 61 15. (x + 1)2 + (y + 4)2 = 25 16. Center: (–7, 5); radius: 4 17. center: (3, –8); radius: 10 11-5

2 Circles in the Coordinate Plane
GEOMETRY LESSON 11-5 18. center: (–4, 1); radius: 5 19. center: (0, 0); radius: 6 20. center: (0.3, 0); radius: 0.2 21. center: (–5, –2); radius: 22. (x + 4)2 + (y – 2)2 = 16 23. (x – 4)2 + (y + 4)2 = 4 24. (x + 3)2 + (y – 2)2 = 25 25. position: (5, 7); range: 9 units 26. position: (–4, 9); range: 12 units 27. x2 + y2 = 4 28. x2 + y2 = 9 11-5

3 Circles in the Coordinate Plane
GEOMETRY LESSON 11-5 29. x2 + (y – 3)2 = 4 30. (x – 2)2 + y2 = 9 31. (x – 2)2 + (y – 2)2 = 16 32. (x + 1)2 + (y – 1)2 = 4 33. (x – 4)2 + (y – 3)2 = 25 34. (x – 5)2 + (y – 3)2 = 13 35. (x – 3)2 + (y – 3)2 = 8 36. (x + 3)2 + (y + 1.5)2 = 6.25 37. (x + 1.5)2 + (y – 5)2 = 18.25 38. (x – 2)2 + (y + 2)2 = 41 39. x2 + y2 = 1 40. The graph is the point (0, 0). 41. Check students’ work. 42. yes 43. No; the x and y terms are not squared. 44. No; the x term is not squared. 45. circumference: ; area: 64 46. (x – 4)2 + (y – 7)2 = 36 47. x-int. = 13, y-int. = 48. (x – h)2 + (y – k)2 = r2 (y – k)2 = r2 – (x – h)2 y – k = ± r2 – (x – h)2 y = ± r2 – (x – h)2 + k 39 4 11-5

4 Circles in the Coordinate Plane
GEOMETRY LESSON 11-5 49. 50. 51. 52. 53. (3, 2); (2, 3) 54. (4, –1); (–4, 1) 11-5

5 Circles in the Coordinate Plane
GEOMETRY LESSON 11-5 55. (2, 2); (–2, 2) 56. (2, 4) 57. (–4, 4) 58. (3, 5) 59–60. Explanations may vary. Sample: Solve the circle and line eqs. for y, enter in the calc., and use the zooming feature. 61. Answers may vary. Sample: Lines can appear tangent on a graph, but may not be. 62. about 11.5, 11.5, 49.8, 49.8 11-5

6 Circles in the Coordinate Plane
GEOMETRY LESSON 11-5 63. a. x2 + y2 = 15,681,600 b mi c. 1.2 mi d. about 32 days 64. a b. (x + 1)2 + (y – 3)2 + (z – 2)2 = 6 65. D 66. I 67. C 68. [2] This equation is in the standard form of an equation of a circle. This means that r2 = Taking the sq. root of each side, r = 5. Thus, the radius is 5. [1] incorrect answer OR incorrect explanation 69. [4] The slope of the radius through (6, 3) is , so the line containing this radius is y = x – . Since y = 0, x = 2, and the center is (2, 0). r = (2 – 6)2 + (0 – 3)2 = 5. (x – 2)2 + y2 = 25 [3] appropriate methods, but with one computational error [2] incorrect equation OR correct equation found incorrectly [1] correct equation, without work shown 3 4 3 4 3 2 11-5

7 Circles in the Coordinate Plane
GEOMETRY LESSON 11-5 70. x = 25; y = 75 71. 38 72. 6, 12 73. –5, 2 74. 4, 4 75. 11, –7 76. 6 79. 3 81. 3 4 11-5


Download ppt "Circles in the Coordinate Plane"

Similar presentations


Ads by Google