Presentation is loading. Please wait.

Presentation is loading. Please wait.

David M. Evans Sarah E. Medland

Similar presentations


Presentation on theme: "David M. Evans Sarah E. Medland"— Presentation transcript:

1 David M. Evans Sarah E. Medland
QTL Linkage Analysis in Mx David M. Evans Sarah E. Medland Wellcome Trust Centre for Human Genetics Oxford United Kingdom Queensland Institute of Medical Research Brisbane Australia Twin Workshop Boulder 2004

2 Computing IBD probabilities (MERLIN)
QTL linkage analysis using pihat QTL linkage analysis using full distribution of IBD probabilities Multivariate QTL linkage analysis

3

4 “Pi hat” method ^ -where π = p2 + 0.5 x p1 -compare against ACE model
Q1 e c a q C2 A2 Q2 P2 E2 1 / 0.5 1 / π ^ -where π = p x p1 -compare against ACE model (50:50 χ02 χ12) ^

5 “Pi hat” method -The likelihood for each pedigree (i) is calculated as: L(θ) = (2π-k)|Σi|-1/2exp[-1/2(yi - μ)’Σi-1(yi - μ)] -where Σi q12 + a12 + e12 πiq12 + a12 ^ = -Easy to specify, especially in large pedigrees, but… -Computationally intensive -Bias in selected samples

6 Computing pi hat within the Mx script
F matrix K matrix pIBD0 (Definition Variables) pIBD pIBD2 F*K = 0*pIBD *pIBD1 + 1*pIBD = π ^

7 “Full IBD” method 1 A1 C1 E1 P1 Q1 e c a q C2 A2 Q2 P2 E2 0.5 1 0.5
1 0.5 0.5 E1 C1 A1 Q1 Q2 A2 C2 E2 e c a q q a c e P1 P2 1 A1 C1 E1 P1 Q1 e c a q C2 A2 Q2 P2 E2 0.5

8 “Full IBD Method” -The likelihood for each pedigree (i) is calculated as: P(IBD = 0)(2π-k)|Σ0|-1/2exp[-1/2(yi - μ)’Σ0-1(yi - μ)] P(IBD = 1)(2π-k)|Σ1|-1/2exp[-1/2(yi - μ)’Σ1-1(yi - μ)] P(IBD = 2)(2π-k)|Σ2|-1/2exp[-1/2(yi - μ)’Σ2-1(yi - μ)] + Σ0 q2 + a2 + e2 a2 = q2 + a2 + e2 Σ1 0.5q2 + a2 = q2 + a2 + e2 Σ2 q2 + a2 = q2 + a2 + e2 -Computationally efficient -More power? (e.g. π = 0.5; p0 = 0.25, p1 = 0.5, p2 = 0.25) p0 = 0.5, p1 = 0, p2 = 0.5) -Difficult to specify in large sibships/pedigrees ^


Download ppt "David M. Evans Sarah E. Medland"

Similar presentations


Ads by Google