Download presentation
Presentation is loading. Please wait.
Published bySuhendra Kusuma Modified over 6 years ago
1
Use the method of cylindrical shells to find the volume of solid obtained by rotating the region bounded by the given curves about the x-axis {image} 1. 2. {image} 3. 4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
2
Set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region bounded by the given curves about the specified axis. {image} 1. 2. {image} 3. 4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
3
Sketch a graph to estimate the x-coordinates of the points of intersection of the given curves. Then use this information to estimate the volume of the solid obtained by rotating about the y-axis the region enclosed by these curves. Please round the answers to the nearest hundredth. y = 0 , y = - x 4 + 5x 3 - x 2 + 5x 1. 2. {image} 3. 4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
4
The region bounded by the given curves is rotated about the specified axis. Find the volume of the resulting solid by any method. {image} 1. 2. {image} 3. 4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
5
Suppose you make napkin rings by drilling holes with different diameters through two wooden balls (which also have different diameters). You discover that both napkin rings have the same height h as shown in the figure. Use cylindrical shells to compute the volume of a napkin ring created by drilling a hole with radius a through the center of a sphere of radius M and express the answer in terms of h. {image} {image} 1. 2. 3. 4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.