Presentation is loading. Please wait.

Presentation is loading. Please wait.

Sorting.

Similar presentations


Presentation on theme: "Sorting."— Presentation transcript:

1 Sorting

2 Sorting Integers How to sort the integers in this array? 20 8 5 10 7 5

3 Elementary Sorting Algorithms
Selection Sort Insertion Sort Bubble Sort

4 Selection Sort Main idea: find the smallest element
put it in the first position find the next smallest element put it in the second position And so on, until you get to the end of the list End of lecture 43. Start of 44

5 Selection Sort -- Example
1 2 3 5 7 12 19 a: 5 1 2 3 19 7 12 5 a: 7 1 2 3 7 19 12 5 a: 12 1 2 3 7 12 19 5 a: 19 1 2 3 7 12 19 5 a:

6 Selection Sort: Code void selectionSort(int *arr, int N) { int posmin, count, tmp; for(count=0;count<N;count++) posmin = findIndexMin(arr,count,N); tmp=arr[posmin]; arr[posmin]=arr[count]; arr[count]=tmp; }

7 Selection Sort: Code int findIndexMin(int *arr, int start, int N) { int posmin=start; int index; for(index=start; index < N; index++) if (arr[index]<arr[posmin]) posmin=index; return posmin; }

8 Swap Action (SelectionSorting)
20 8 5 10 7 5 8 20 10 7 5 7 20 10 8 5 7 8 10 20 5 7 8 10 20

9 Selection Sort Analysis
What is the time complexity of this algorithm? Worst case == Best case == Average case Each iteration performs a linear search on the rest of the array first element N + second element N-1 + penultimate element last element 1 Total N(N+1)/ = (N2+N)/2

10 Insertion Sort Basic idea (sorting cards):
Starts by considering the first two elements of the array data, if out of order, swap them Consider the third element, insert it into the proper position among the first three elements. Consider the forth element, insert it into the proper position among the first four elements. … …

11 Insertion Sort -- Example
1 2 3 12 5 7 19 a: 1 2 3 19 5 7 12 a: 1 2 3 12 19 7 5 a: 1 2 3 7 12 19 5 a:

12 Insertion Sort: Code void insertionSort(int *arr, int N) { int pos, count, val; for(count=1; count < N; count++) val = arr[count]; for(pos=count-1; pos >= 0; pos--) if (arr[pos] > val) arr[pos+1]=arr[pos]; else break; arr[pos+1] = val; }

13 Insertion Sort -- animation
count val pos 1 2 3 12 5 7 19 a: 1 2 3 5 7 19 a: 12 19 1 2 3 19 5 7 a: 12 1 2 3 19 5 7 12 a:

14 Insertion Sort -- animation (cont)
count val pos 1 2 3 19 5 7 12 a: 1 2 3 5 7 12 a: 19 19 1 2 3 19 7 12 a: 12 1 2 3 12 19 7 a: 5 1 2 3 12 19 7 5 a:

15 Insertion Sort -- animation (cont)
count val pos 1 2 3 12 19 7 5 a: 1 2 3 12 19 7 5 a: 19 1 2 3 12 19 5 a: 12 1 2 3 12 19 5 a: 7 1 2 3 7 12 19 5 a:

16 Insertion Sort Analysis
What is the time complexity of this algorithm? Worst case > Average case > Best case Each iteration inserts an element at the start of the array, shifting all sorted elements along second element penultimate element N-1 + last element N Total (2+N)(N-1)/2 = O(N2)

17 Bubble Sort Basic idea (lighter bubbles rise to the top):
Exchange neighbouring items until the largest item reaches the end of the array Repeat for the rest of the array

18 Bubble Sort -- Example 5 12 7 19 1 2 3 a: 1 2 3 12 7 19 5 a: a: 19 12 7 5 1 2 3 a: 1 2 3 7 12 19 5 a: 1 2 3 7 12 19 5 a: 12 19 7 5 a: 1 2 3 1 2 3 12 7 19 5 a: 1 2 3 7 12 19 5 a: 1 2 3 7 12 19 5 a: 1 2 3 12 7 19 5 a:

19 Bubble Sort: Code void bubbleSort(int *arr, int N){ int i, temp, bound = N-1; int swapped = 1; while (swapped > 0 ) { swapped = 0; for(i=0; I < bound; i++) if ( arr[i] > arr[i+1] ) { temp = arr[i]; arr[i] = arr[i+1]; arr[i+1] = temp; swapped = i; } bound = swapped;

20 Bubble Sort Analysis What is the time complexity of this algorithm?
Worst case > Average case > Best case Each iteration compares all the adjacent elements, swapping them if necessary first iteration N second iteration N-1 + last iteration 1 Total N(1+N)/2 = O(N2)

21 Best sorting routines are N log(N)
Summary Insertion, Selection and Bubble sort: Worst case time complexity is proportional to N2. Best sorting routines are N log(N)

22 NLogN Algorithms Divide and Conquer Merge Sort Quick Sort Heap Sort

23 Divide and Conquer What if we split the list into two parts? 10 10 12
8 4 2 11 7 5 12 8 4 2 11 7 5

24 Divide and Conquer Sort the two parts: 4 8 10 12 2 5 7 11 10 12 8 4 2

25 Divide and Conquer Then merge the two parts together: 2 4 5 7 8 10 11
12 4 8 10 12 2 5 7 11 End of lecture 44.


Download ppt "Sorting."

Similar presentations


Ads by Google