Download presentation
Presentation is loading. Please wait.
1
Quine-McClusky Minimization Method
Lecture L5.3 Section 5.3
2
Quine-McCluskey Method
Tabular Representations Prime Implicants Essential Prime Implicants
3
Tabular Representations
YZ 00 01 11 10 !W & Y & !Z 0-10 WX 00 !W & X 01-- 1 01 1 1 1 1 11 1 1 1 X & Y -11- 10 1 W & !Y & Z 1-01 F = X & Y # !W & Y & !Z # W & !Y & Z # !W & X
4
Prime Implicants Each product term is an implicant
F = X & !Y & Z # !X & !Z # !X & Y A product term that cannot have any of its variables removed and still imply the logic function is called a prime implicant.
5
Prime Implicants X YZ 00 01 11 10 1 -10 1 1 1 1 1 1-- F = Y & !Z # X
6
Prime Implicants X YZ 00 01 11 10 1 -10 Minterm X Y Z F 0 O O O 0
1 -10 Minterm X Y Z F 0 O O O 0 O O 1 1-- F = Y & !Z # X
7
Finding Prime Implicants
Step 1 Step 2 Step 3 4 1 O 0 (2,6) - 1 0 (4,5,6,7) 1 - - (4,5) 1 0 - (4,6,5,7) 1 - - (4,6) 1 - 0 (5,7) 1 - 1 (6,7) 1 1 - All unchecked entries are Prime Implicants -10 Y & !Z 1-- X
8
Prime Implicants X YZ 00 01 11 10 1 -10 Minterm X Y Z F 0 O O O 0
1 -10 Minterm X Y Z F 0 O O O 0 O O 1 1-- F = Y & !Z # X
9
Essential Prime Implicants
YZ 00 01 11 10 WX Find the essential prime implicants using the Q-M method. 00 1 1 1 1 01 1 1 11 1 1 10 1 1
10
Essential Prime Implicants
minterms YZ 00 01 11 10 WX 00 1 1 1 1 01 1 1 11 1 1 10 1 1
11
Finding Prime Implicants
Step 1 Step 2 Step 3 (0,1) 000- (0,1,2,3) 00-- (0,2) 00-0 (0,2,1,3) 00-- (0,8) -000 (0,2,8,10) -0-0 (1,3) 00-1 (1,5) 0-01 (0,8,2,10) -0-0 (2,3) 001- (1,5,3,7) 0--1 (2,10) -010 (1,3,5,7) 0--1 (8,10) 10-0 (3,7) 0-11 6 Prime Implicants (5,7) 01-1 1-10 -111 111- 00-- -0-0 0--1 (10,14) 1-10 (7,15) -111 (14,15) 111-
12
Find Essential Prime Implicants
Covered minterms Minterms 1-10 -111 111- 00-- -0-0 0--1 10,14 7,15 14,15 0,1,2,3 0,2,8,10 1,3,5,7 X X X X * X X X X X X X X X X X X X X
13
3 Prime Implicants F = !W & Z # W & X & Y # !X & !Z YZ 00 01 11 10 WX
0--1 01 1 1 !W & Z 11 1 1 111- 10 1 1 !X & !Z W & X & Y -0-0
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.