Presentation is loading. Please wait.

Presentation is loading. Please wait.

Warm Up Simplify: a)

Similar presentations


Presentation on theme: "Warm Up Simplify: a) "β€” Presentation transcript:

1 Warm Up Simplify: a) πŸ“ 𝟐+πŸ‘π’Š βˆ’πŸ”π’Š b) πŸπ’Š πŸ’π’Š πŸ”π’Š
I can completely factor a polynomial Warm Up Simplify: a) πŸ“ 𝟐+πŸ‘π’Š βˆ’πŸ”π’Š b) πŸπ’Š πŸ’π’Š πŸ”π’Š c) (πŸ’βˆ’πŸ‘π’Š)(πŸ“βˆ’π’Š) d) βˆ’πŸ(πŸ•+πŸπ’Š)(πŸ‘βˆ’π’Š) Divide πŸ’ 𝒙 πŸ‘ βˆ’πŸ’ 𝒙 𝟐 +πŸ—π’™βˆ’πŸπŸ πŸπ’™+𝟏

2 Simplify: a) πŸ“ 𝟐+πŸ‘π’Š βˆ’πŸ”π’Š b) πŸπ’Š πŸ’π’Š πŸ”π’Š 𝟏𝟎+πŸπŸ“π’Šβˆ’πŸ”π’Š 𝟏𝟎+πŸ—π’Š πŸ– π’Š 𝟐 πŸ”π’Š βˆ’πŸ– πŸ”π’Š βˆ’πŸ’πŸ–π’Š

3 Simplify: c) (πŸ’βˆ’πŸ‘π’Š)(πŸ“βˆ’π’Š) d) βˆ’πŸ(πŸ•+πŸπ’Š)(πŸ‘βˆ’π’Š) πŸπŸŽβˆ’πŸ’π’Šβˆ’πŸπŸ“π’Š+πŸ‘ π’Š 𝟐 πŸπŸŽβˆ’πŸπŸ—π’Š+πŸ‘ βˆ’πŸ πŸπŸ•βˆ’πŸπŸ—π’Š (βˆ’πŸπŸ’βˆ’πŸ’π’Š)(πŸ‘βˆ’π’Š) βˆ’πŸ’πŸ+πŸπŸ’π’Šβˆ’πŸπŸπ’Š+πŸ’ π’Š 𝟐 βˆ’πŸ’πŸ+πŸπ’Š+πŸ’ βˆ’πŸ βˆ’πŸ’πŸ”+πŸπ’Š

4 Divide πŸ’ 𝒙 πŸ‘ βˆ’πŸ’ 𝒙 𝟐 +πŸ—π’™βˆ’πŸπŸ πŸπ’™+𝟏 2π‘₯ 4 π‘₯ 3 βˆ’6π‘₯ 2 12π‘₯ +1 2π‘₯ 2 βˆ’3π‘₯ 6 2π‘₯ 2 βˆ’3π‘₯ 6 𝟐 𝒙 𝟐 βˆ’πŸ‘π’™+πŸ”βˆ’ πŸπŸ– πŸπ’™+𝟏

5 Homework Questions

6 What do you notice about the constant?
Multiply π‘₯+1 π‘₯βˆ’7 π‘₯βˆ’7 π‘₯+3 π‘₯+2 8π‘₯βˆ’12 (π‘₯+4) 2 π‘₯ 2 βˆ’6π‘₯βˆ’7 π‘₯ 2 βˆ’4π‘₯βˆ’21 8 π‘₯ 2 +4π‘₯βˆ’24 π‘₯ 2 +8π‘₯+16 What do you notice about the constant?

7 Identifying Possible Zeros
𝑦= π‘₯ 4 βˆ’ π‘₯ 3 βˆ’5 π‘₯ 2 +3π‘₯+6 Based on the constant, what are some possible zeros? Factors of 6: 1βˆ—6 , βˆ’1βˆ—βˆ’6 , 2βˆ—3 , βˆ’2βˆ—βˆ’3 π‘₯=Β±1, π‘₯=Β±6, π‘₯=Β±2, π‘₯=Β±3 Graph the equation on your calculator and find one zero

8 Identifying Possible Zeros
𝑦= π‘₯ 4 βˆ’ π‘₯ 3 βˆ’5 π‘₯ 2 +3π‘₯+6 A zero at π‘₯=2 means a linear factor of: (π‘₯βˆ’2) Divide π‘₯ 4 βˆ’ π‘₯ 3 βˆ’5 π‘₯ 2 +3π‘₯+6 π‘₯βˆ’2

9 (π‘₯βˆ’2)(π‘₯ 3 + π‘₯ 2 βˆ’3π‘₯βˆ’3) π‘₯ π‘₯ 4 1 π‘₯ 3 βˆ’3π‘₯ 2 βˆ’3π‘₯ βˆ’2 βˆ’2 π‘₯ 3 βˆ’2π‘₯ 2 6π‘₯ 6 π‘₯ 3
π‘₯ 4 βˆ’ π‘₯ 3 βˆ’5 π‘₯ 2 +3π‘₯+6 π‘₯βˆ’2 π‘₯ π‘₯ 4 1 π‘₯ 3 βˆ’3π‘₯ 2 βˆ’3π‘₯ βˆ’2 βˆ’2 π‘₯ 3 βˆ’2π‘₯ 2 6π‘₯ 6 π‘₯ 3 π‘₯ 2 βˆ’3π‘₯ βˆ’3 (π‘₯βˆ’2)(π‘₯ 3 + π‘₯ 2 βˆ’3π‘₯βˆ’3)

10 (π‘₯βˆ’2)(π‘₯+1)( π‘₯ 2 βˆ’3) π‘₯ π‘₯ 3 0 π‘₯ 2 βˆ’3π‘₯ +1 π‘₯ 2 0π‘₯ βˆ’3 π‘₯ 2 0π‘₯ βˆ’3
π‘₯ 3 +π‘₯ 2 βˆ’3π‘₯βˆ’3 π‘₯+1 π‘₯ π‘₯ 3 0 π‘₯ 2 βˆ’3π‘₯ +1 π‘₯ 2 0π‘₯ βˆ’3 π‘₯ 2 0π‘₯ βˆ’3 (π‘₯βˆ’2)(π‘₯+1)( π‘₯ 2 βˆ’3)

11 Completely Factor the Polynomial
𝑦= π‘₯ 4 βˆ’6 π‘₯ 3 βˆ’6 π‘₯ 2 βˆ’6π‘₯βˆ’7 Identify possible factors by looking at the constant Find one linear factor (using your calculator) and divide Divide by a second linear factor Write polynomial in factored form Identify all roots (real and complex) of the polynomial

12 Completely Factor the Polynomial
𝑦= π‘₯ 4 βˆ’6 π‘₯ 3 βˆ’6 π‘₯ 2 βˆ’6π‘₯βˆ’7 Identify possible factors by looking at the constant π‘₯=Β±7 or π‘₯=Β±1

13 Completely Factor the Polynomial
𝑦= π‘₯ 4 βˆ’6 π‘₯ 3 βˆ’6 π‘₯ 2 βˆ’6π‘₯βˆ’7 Find one linear factor (using your calculator) and divide π‘₯ 4 βˆ’6 π‘₯ 3 βˆ’6 π‘₯ 2 βˆ’6π‘₯βˆ’7 π‘₯+1 (π‘₯+1)(π‘₯ 3 βˆ’7 π‘₯ 2 +π‘₯βˆ’7)

14 Completely Factor the Polynomial
𝑦= π‘₯ 4 βˆ’6 π‘₯ 3 βˆ’6 π‘₯ 2 βˆ’6π‘₯βˆ’7 Divide by a second linear factor π‘₯ 3 βˆ’7 π‘₯ 2 +π‘₯βˆ’7 π‘₯βˆ’7 (π‘₯+1)(π‘₯βˆ’7)( π‘₯ 2 +1)

15 Completely Factor the Polynomial
𝑦= π‘₯ 4 βˆ’6 π‘₯ 3 βˆ’6 π‘₯ 2 βˆ’6π‘₯βˆ’7 Write polynomial in factored form Identify all roots (real and complex) of the polynomial (π‘₯+1)(π‘₯βˆ’7)( π‘₯ 2 +1) π‘₯=7 , π‘₯=βˆ’1and π‘₯=±𝑖

16 A few reminders… Don’t forget to factor out a greatest common factor, when possible. Example: 3 π‘₯ 4 +6 π‘₯ 3 βˆ’3 π‘₯ 2 +9π‘₯ 3π‘₯ π‘₯ 3 +2 π‘₯ 2 βˆ’π‘₯+3 When you get to a quadratic, you can use the quadratic formula to find the roots if it doesn’t factor

17 Factoring and Finding Roots WS


Download ppt "Warm Up Simplify: a) "

Similar presentations


Ads by Google