Presentation is loading. Please wait.

Presentation is loading. Please wait.

第七章 資訊隱藏 張真誠 國立中正大學資訊工程研究所.

Similar presentations


Presentation on theme: "第七章 資訊隱藏 張真誠 國立中正大學資訊工程研究所."— Presentation transcript:

1 第七章 資訊隱藏 張真誠 國立中正大學資訊工程研究所

2 影像偽裝術

3 Introduction Images have been widely used in our daily life.
The image security has become an important issue in current computer world. Image cryptology is a very useful tool to defend the information security.

4 Apply the Traditional Cryptosystem on Images

5 Problems The cipherimage is meaningless. Image Camouflage(影像偽裝)
Image size is huge Image Compression(影像壓縮) The decrypted image containing a small distortion is usually acceptable. Vector Quantization (向量量畫編碼法)

6 Virtual Image Cryptosystem

7 Vector Quantization Encoder

8 Vector Quantization Decoder

9 The Principle of the Virtual Image Cryptosystem
Separate O into a set of vectors {O1, O2, O3,…, Ono}. Separate V into another set of vectors {V1, V2, V3, … , Vnv} Let O be the original image Let {V1, V2, V3, …, Vnv} be the codebook

10 Encryption Randomly generate the transformed-origin G and the project-direction D. Project {V1, V2, V3, …, Vnv} to D based on G Sort the projected results, and obtain {{V’1, V’2, V’3, …, V’nv}

11

12 Encrypt w, h, no, G, and D into wc, hc, noc, Gc, and Dc by DES-like, respectively.
Encrypt I into Ic, where Ic=IXORX and X is the bit-string containing G, D, G, D,… only. Hide wc, hc, noc, Gc, Dc, and Ic into the pixels of V. Cipher Image Vc

13 Decryption

14 Original Image Airplane 512 X 512
Empirical Tests Test1: Original Image Airplane X 512

15 Virtual Image Lena 256 X 256 Cipher Image Lena 256 X 256 PSNR=37.87dB

16 Decrypted Image Airplane 512 X 512
PSNR=30.22dB

17 Original Image Airplane 512 X 512
Test2: Original Image Airplane X 512

18 Virtual Image Lena 360 X 360 Cipher Image Lena 360 X 360 PSNR=45.13dB

19 Decrypted Image Airplane 512 X 512
PSNR=31.36dB

20 Original Image Peppers 512 X 512
Test3: Original Image Peppers X 512

21 Virtual Image Lena 256 X 256 Cipher Image Lena 256 X 256 PSNR=37.60dB

22 Decrypted Image Peppers 512 X 512
PSNR=29.91dB

23 資訊隱藏

24 CCC

25 Vector Quantization (VQ) Concept Encoding and Decoding

26 Vector Quantization (VQ)
Image compression technique w h Index table Vector Quantization Encoder

27 Vector Quantization (VQ)
Image compression technique w h Image Index table Vector Quantization Decoder

28 6

29 標準向量量化編碼法

30 Vector Quantization (VQ) Codebook Training
Codebook generation 1 . N-1 N Training Images Training set Separating the image to vectors

31 Vector Quantization (VQ) Codebook Training
Codebook generation 1 . 1 . 254 255 N-1 N Initial codebook Training set Codebook initiation

32 Vector Quantization (VQ) Codebook Training
1 . Index sets 1 . 254 255 (1, 2, 5, 9, 45, …) (101, 179, 201, …) (8, 27, 38, 19, 200, …) N-1 N (23, 0, 67, 198, 224, …) Codebook Ci Training set 1 . Compute mean values 254 255 Replace the old vectors New Codebook Ci+1 Training using iteration algorithm 10

33 Example Codebook To encode an input vector, for example, v = (150,145,121,130) (1) Compute the distance between v with all vectors in codebook d(v, cw1) = d(v, cw2) = d(v, cw3) = 112.3 d(v, cw4) = d(v, cw5) = d(v, cw6) = 235.1 d(v, cw7) = d(v, cw8) = 63.2 (2) So, we choose cw8 to replace the input vector v. 11

34 LBG Algorithm 一次訓練 256 個 codewords 做了100次 連續兩次 MSE 之差別已經夠小

35 Full Search (FS) For example: Let the codebook size be 256
# of searched nodes per image vector = 256 Time consuming The closest codeword Image vector C = {c1, c2, …, cnc}

36 Euclidean Distance The dimensionality of vector = k (= w*h)
An input vector x = (x1, x2, …, xk) A codeword yi = (yi1, yi2, …, yik) The Euclidean distance between x and yi

37 數位浮水印 Watermark ‘National Chung Cheng University’ (64*64 pixels)
Original image (512*512 pixels)

38 找出相近的Pairs 16

39 發現 d(CW0, CW8) > TH d(CW13, CW14) > TH CW1 ,CW2 CW4, CW5
藏 1 藏 0 CW1 ,CW2 CW4, CW5 CW6, CW7 CW15, CW10 CW12, CW9 Unused CW0, CW8, CW13, CW14 CW11 ,CW3 17

40 Encode Index Table CW0, CW8, CW13, CW14 Unused Index Table
Original Image Index Table 18

41 Water mark: 1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 Index Table
1 1 1 1 1 1 1 Index Table Water mark CW1, CW2, CW4, CW5 CW6, CW7 CW11, CW3 CW15, CW10 CW12, CW9 藏 1 藏 0 19

42 Water mark: 1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 Index Table
1 1 1 1 1 1 1 Index Table Water mark CW1, CW2, CW4, CW5 CW6, CW7 CW11, CW3 CW15, CW10 CW12, CW9 藏 1 藏 0 20

43 Water mark: 1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 Index Table
1 1 1 1 1 1 1 Index Table Water mark 21

44 Original image (512*512 pixels)
資訊隱藏 (Data Hiding) Secret Data: Hiding Original image (512*512 pixels)

45 分 群 CW0 CW1 CW3 CW5 G2 CW2 G1 CW0 CW4 G0 CW1 CW2 CW3 CW4 CW5 Grouping
發現 d(CW0, CW4) < TH d(CW1, CW3, CW5) < TH CW2 CW5

46 藏 入 CW1 CW3 CW5 G2 CW2 G1 CW0 CW4 G0 CW2 CW1 CW4 CW2 CW5 CW4
藏 入 Secret bit stream: (101)2= 5 CW1 CW3 CW5 G2 CW2 G1 CW0 CW4 G0 VQ Compression CW2 CW1 CW0 CW2 CW1 CW4 CW2 CW1 CW4 1 G1 : CW2 G0 : CW0 CW4 G2 : CW1 CW3 CW5 CW2 CW3 CW0 2 CW2 CW3 CW4 3 CW2 CW5 CW0 4 CW2 CW5 CW4 5 After embedding Codebook CW2 CW5 CW4

47 Total combinations: 3x3x2x3=54
VQ Compression CW1 CW3 CW5 G2 CW2 G1 CW0 CW4 G0 CW0 CW3 CW5 G0 : CW0 CW4 G2 : CW1 CW3 CW5 G2 : CW1 CW3 CW5 G2 : CW1 CW3 CW5 Secret Bit stream: (101111)2=47 Codebook CW1 CW3 CW5 CW0 CW4 After embedding CW4 CW3 CW5 Total combinations: 3x3x2x3=54 25

48 Search-order Coding (SOC)

49 Search-Order Coding (SOC)
Indicator The compressing steps 31 207 211 8 7 35 P1 = P2 = P3 = 0 00 P6 = 0 01 Compression codes = …

50 Information hiding on the SOC codes
The proposed scheme: - Information hiding: to embed secret data into host image - Steganography : to embed secret data into host image and the interceptors will not notice the existence of secret data - Based on SOC

51 Information hiding on the SOC codes
Main idea: Ex. receiver receives the compression codes : SOC OIV (original index value) OIV SOC SOC It means that the embedded secret data is “01100” if SOC is represented to hide “0” and OIV is represented to hide “1”.

52 Information hiding on the SOC codes
Method: ex. A 3*3 index table: 1 2 3 18 21 31 30 29 32 If the secret data is “ ”, then the hiding position of each bit will be in the raster scan order.

53 Information hiding on the SOC codes
Defined: “0”  embedded into SOC and “1”  embedded into OIV. Embedding phase: SOC ====> there is nothing that needs to change for its compression codes hide “0” SOC ====> translate SOC into OIV (give up SOC coding and keep the OIV) hide “1” OIV ====> there is nothing that needs to change hide “1” OIV ====> translate OIV into SOC ex. hide “0” 11 (SOC) + OIV

54 Information hiding on the SOC codes
compression codes are still OIV: Ex. translate SOC into OIV : => translate OIV into SOC : =>

55 Information hiding on the SOC codes
Cost table (bits):

56 Information hiding on the SOC codes
Security: For enhancing the security of our method, the position in the index table for hiding each bit of secret data can be determined by using pseudo random number generator, and the secret data can be encrypted by using traditional cryptography system such as DES or RSA in advance.

57 Experimental results

58 Experimental results

59 Experimental results

60 Experimental results

61 Switching tree coding (STC)

62 Switching-tree coding (STC)
Sheu proposed the STC algorithm in 1999 Re-encode the index table U L the current index

63 Switching-tree coding (STC)
If P = 7, then P = U P’ = ‘11’ If P = 10, then P = L P’ = ‘10’

64 If P = 14, then P = A in index (3)
P’ = ‘01’ || index (3) = ‘ ’ If P = 17, then P’ = ‘00’ || (17) = ‘ ’ n=5

65 Information Hiding on the STC codes (IHSTC)

66 Information Hiding on the STC codes (IHSTC)
Watermark: … Index table

67 Information Hiding on the STC codes (IHSTC)
Watermark: … P’ = ‘00’||(10) ‘00’||(25) ‘00’||(21) … ‘00’||(17)

68 Information Hiding on the STC codes (IHSTC)
Watermark: … ‘10’ P’ = ‘00’||(10) ‘00’||(25) ‘00’||(21) … ‘00’||(17)

69 Information Hiding on the STC codes (IHSTC)
Watermark: … ‘10’ P’ = ‘00’||(10) ‘00’||(25) ‘00’||(21) … ‘00’||(17) ‘10’ ‘00’||(128) …

70 Information Hiding on the STC codes (IHSTC)
Watermark: … ‘11’ P’ = ‘00’||(10) ‘00’||(25) ‘00’||(21) … ‘00’||(17) ‘10’ ‘00’||(128) … ‘10’

71 Three binary connection tree

72 Three binary connection tree
If U-length > L-length Tree B If U-length < L-length Tree C Otherwise Tree A Tree B Tree C

73 Experiment results Image size = 512*512, n = 3 and |H| = 1024
NSTC: 在 index table 中,可藏入之index數 |H|: Secret Information 之長度 Difference: 藏入前與藏入後 bit 數的差異

74 Experiment results Image size = 512*512, n = 3 and |H| = 2048
Image size = 512*512, n = 3 and |H| = NSTC

75 Image size = 512*512, n = 5 and |H| = 1024
Image size = 512*512, n = 5 and |H| = NSTC

76 Conclusions A novel information-hiding scheme based on a switching-tree coding The IHSTC system can hide a huge amount of information in the index table Only a few extra bits are needed to record the corresponding information The average time needed to hide an information character is seconds IHSTC -- an efficient and effective scheme for hiding secret information


Download ppt "第七章 資訊隱藏 張真誠 國立中正大學資訊工程研究所."

Similar presentations


Ads by Google