Presentation is loading. Please wait.

Presentation is loading. Please wait.

Abstract Data Types Stack, Queue Amortized analysis

Similar presentations


Presentation on theme: "Abstract Data Types Stack, Queue Amortized analysis"— Presentation transcript:

1 Abstract Data Types Stack, Queue Amortized analysis

2 Queue Inject(x,Q) : Insert last element x into Q
Pop(Q) : Delete the first element in Q Empty?(Q): Return yes if Q is empty Front(Q): Return the first element in Q Size(Q) Make-queue()

3 Implementation with lists
head size=3 12 1 5 tail inject(4,Q)

4 Implementation with lists
head size=3 12 1 5 4 tail inject(4,Q)

5 Implementation with lists
head size=3 12 1 5 4 tail inject(4,Q) Complete the details by yourself

6 Implementation with stacks
13 size=5 inject(x,Q): push(x,S2); size ← size + 1 inject(2,Q)

7 Implementation with stacks
13 size=5 inject(x,Q): push(x,S2); size ← size + 1 inject(2,Q)

8 Implementation with stacks
13 size=6 inject(x,Q): push(x,S2); size ← size + 1 inject(2,Q)

9 Pop S1 S2 13 5 4 17 21 2 size=6 pop(Q): if empty?(Q) error
size=6 pop(Q): if empty?(Q) error if empty?(S1) then move(S2, S1) pop( S1); size ← size -1 pop(Q)

10 Pop S2 S1 5 4 17 21 2 size=6 pop(Q): if empty?(Q) error
size=6 pop(Q): if empty?(Q) error if empty?(S1) then move(S2, S1) pop( S1); size ← size -1 pop(Q)

11 Pop S2 S1 5 4 17 21 2 size=5 pop(Q): if empty?(Q) error
size=5 pop(Q): if empty?(Q) error if empty?(S1) then move(S2, S1) pop( S1); size ← size -1 pop(Q) pop(Q)

12 Pop S1 S2 2 5 4 17 21 size=5 pop(Q): if empty?(Q) error
size=5 pop(Q): if empty?(Q) error if empty?(S1) then move(S2, S1) pop( S1); size ← size -1 pop(Q) pop(Q)

13 Pop S1 S2 21 2 5 4 17 size=5 pop(Q): if empty?(Q) error
size=5 pop(Q): if empty?(Q) error if empty?(S1) then move(S2, S1) pop( S1); size ← size -1 pop(Q) pop(Q)

14 Pop S1 S2 17 21 2 5 4 size=5 pop(Q): if empty?(Q) error
5 4 size=5 pop(Q): if empty?(Q) error if empty?(S1) then move(S2, S1) pop( S1); size ← size -1 pop(Q) pop(Q)

15 Pop S1 S2 4 17 21 2 5 size=5 pop(Q): if empty?(Q) error
if empty?(S1) then move(S2, S1) pop( S1); size ← size -1 pop(Q) pop(Q)

16 Pop S1 S2 5 4 17 21 2 size=5 pop(Q): if empty?(Q) error
if empty?(S1) then move(S2, S1) pop( S1); size ← size -1 pop(Q) pop(Q)

17 Pop S1 S2 4 17 21 2 size=4 pop(Q): if empty?(Q) error
if empty?(S1) then move(S2, S1) pop( S1); size ← size -1 pop(Q) pop(Q)

18 move(S2, S1) while not empty?(S2) do x ← pop(S2) push(x,S1)

19 Analysis O(n) worst case time per operation

20 Amortized Analysis How long it takes to perform m operations on the worst case ? O(nm) Is tha tight ?

21 Key Observation An expensive operation cannot occur too often !

22 THM: If we start with an empty queue and perform m operations then it takes O(m) time

23 Proof Consider Recall that: Amortized(op) = actual(op) + ΔΦ
This is O(1) if a move does not occur Say we move S2: Then the actual time is |S2| + O(1) ΔΦ = -|S2| So the amortized time is O(1)

24 Double ended queue (deque)
Push(x,D) : Insert x as the first in D Pop(D) : Delete the first element of D Inject(x,D): Insert x as the last in D Eject(D): Delete the last element of D Size(D) Empty?(D) Make-deque()

25 Implementation with doubly linked lists
head tail size=2 13 5 x.next x.element x.prev x

26 Empty list size=0 We use two sentinels here to make the code simpler
head tail size=0 We use two sentinels here to make the code simpler

27 Push size=1 5 push(x,D): n = new node n.element ←x n.next ← head.next
tail size=1 5 push(x,D): n = new node n.element ←x n.next ← head.next (head.next).prev ← n head.next ← n n.prev← head size ← size + 1

28 4 size=1 5 push(x,D): n = new node n.element ←x n.next ← head.next
tail size=1 5 push(x,D): n = new node n.element ←x n.next ← head.next (head.next).prev ← n head.next ← n n.prev← head size ← size + 1 push(4,D)

29 4 size=1 5 push(x,D): n = new node n.element ←x n.next ← head.next
tail size=1 5 push(x,D): n = new node n.element ←x n.next ← head.next (head.next).prev ← n head.next ← n n.prev← head size ← size + 1 push(4,D)

30 4 size=1 5 push(x,D): n = new node n.element ←x n.next ← head.next
tail size=1 5 push(x,D): n = new node n.element ←x n.next ← head.next (head.next).prev ← n head.next ← n n.prev← head size ← size + 1 push(4,D)

31 4 size=2 5 push(x,D): n = new node n.element ←x n.next ← head.next
tail size=2 5 push(x,D): n = new node n.element ←x n.next ← head.next (head.next).prev ← n head.next ← n n.prev← head size ← size + 1 push(4,D)

32 Implementation with stacks
13 size=5 push(x,D): push(x,S1) push(2,D)

33 Implementation with stacks
2 13 size=6 push(x,D): push(x,S1) push(2,D)

34 Pop S1 S2 2 13 5 4 17 21 size=6 pop(D): if empty?(D) error
size=6 pop(D): if empty?(D) error if empty?(S1) then split(S2, S1) pop( S1) pop(D)

35 Pop S1 S2 13 5 4 17 21 size=5 pop(D): if empty?(D) error
size=5 pop(D): if empty?(D) error if empty?(S1) then split(S2, S1) pop( S1) pop(D) pop(D)

36 Pop S2 S1 5 4 17 21 size=4 pop(D): if empty?(D) error
size=4 pop(D): if empty?(D) error if empty?(S1) then split(S2, S1) pop( S1) pop(D) pop(D)

37 Pop S2 S1 5 4 17 21 size=4 pop(D): if empty?(D) error
size=4 pop(D): if empty?(D) error if empty?(S1) then split(S2, S1) pop( S1) pop(D)

38 Pop S2 S1 5 4 17 21 size=4 pop(D): if empty?(D) error
size=4 pop(D): if empty?(D) error if empty?(S1) then split(S2, S1) pop( S1) pop(D)

39 Pop S2 S1 5 4 17 21 size=4 pop(D): if empty?(D) error
5 4 S2 17 21 size=4 pop(D): if empty?(D) error if empty?(S1) then split(S2, S1) pop( S1) pop(D)

40 Pop S1 S2 4 17 21 size=4 pop(D): if empty?(D) error
if empty?(S1) then split(S2, S1) pop( S1) pop(D)

41 Pop S1 S2 4 17 21 size=3 pop(D): if empty?(D) error
if empty?(S1) then split(S2, S1) pop( S1) pop(D)

42 Split S1 S2 S3

43 Split S1 S2 S3 21

44 Split S1 S2 5 4 S3 17 21

45 Split S1 S2 4 5 S3 17 21

46 Split S1 S2 5 4 S3 17 21

47 Split S1 17 S2 5 4 S3 21

48 Split S1 S2 5 4 17 21 S3

49 split(S2, S1) S3 ← make-stack() d ← size(S2) while (i ≤ ⌊d/2⌋) do x ← pop(S2) push(x,S3) i ← i+1 while (i ≤ ⌈d/2⌉) do x ← pop(S2) push(x,S1) i ← i+1 x ← pop(S3) push(x,S2) i ← i+1

50 Analysis O(n) worst case time per operation

51 Thm: If we start with an empty deque and perform m operations then its takes O(m) time

52 A better bound Consider Recall that: Amortized(op) = actual(op) + ΔΦ
This is O(1) if no splitting occurs Say we split S1: Then the actual time is |S1| + O(1) ΔΦ = -|S1| So the amortized time is O(1)


Download ppt "Abstract Data Types Stack, Queue Amortized analysis"

Similar presentations


Ads by Google