Presentation is loading. Please wait.

Presentation is loading. Please wait.

TRANSFORMATION. TRANSFORMATION Foldable PRIME Original New IN MATH TERMS…. P -> P’

Similar presentations


Presentation on theme: "TRANSFORMATION. TRANSFORMATION Foldable PRIME Original New IN MATH TERMS…. P -> P’"— Presentation transcript:

1

2 TRANSFORMATION

3 Foldable

4 PRIME Original New IN MATH TERMS…. P -> P’

5 Matrix

6 On the back of your foldable
Matrix-Scalar Multiplication – multiply each element of the matrix by a real number Given enlargement reduction Given a Picture A (1,1) B (1,4) C (6,1) A’ (2,2) B’ (2,8) C’ (12,2) A’’ (.5,.5) B’’ (.5,2) C’’ (3,.5) A B C X Y A B C 2 A’ B’ C’ A B C A’ B’ C’ = 1/2 =

7

8 REFLECTION Mirror line; any that is reflected across X-axis
(x,y) -> (x,-y) A B C A’ B’ C’ x x y y Y-axis (x,y) -> (-x,y) A B C A’ B’ C’ x x y y Y=X (x,y) -> (y,x) A B C A’ B’ C’ x x y y Y=-x (x,y) -> (-y,-x) A B C A’ B’ C’ x x y y Y (2,4) B’ (6,4) C’ C (4,6) C (4,6) C’ (-4,6) C (4,6) C (4,6) (2,2) A’ A (2,2) B (4,2) B’ (-4,2) A’ (-2,2) A (2,2) B (4,2) B (4,2) X A (2,2) A (2,2) B (4,2) B’ (4,-2) A (-2,2) A’ (2,-2) C’ (4,-6) C’ (-6,4) (-2,4) B’

9

10 ROTATION a point which a figure is turned-about during a rotation transformation 90⁰ (x,y) -> (-y,x) A B C A’ B’ C’ x x y y 180⁰ (x,y) -> (-x,-y) A B C A’ B’ C’ x x y y 270⁰ (x,y) -> (y,-x) A B C A’ B’ C’ x x y y 360o is same Y (-4,6) C’ (-4,2) B’ C (4,6) C (4,6) C (4,6) A (2,2) B (4,2) A (2,2) A (2,2) B (4,2) A’ (-2,2) X B (4,2) (-4,-2) B’ A’ (-2,-2) A(2,-2) C’ (-4,-6) C’ (6,-4) B’ (2,-4)

11 COMPARE AND CONTRAST

12 Tessellation A collection of figures that cover a plane with no gaps or overlaps

13

14 x’ y’ (9,6) Translation x y Translate: (7, 3) Given: (x + 2, y + 3)
A  SLIDE x y Translate: (7, 3) Given: (x + 2, y + 3) x’ y’ (9,6)

15 What’s Missing?

16 symmetry Rotational Symmetry: the figure can be mapped onto itself by a rotation of 180° or less about the origin center of the figure Line of Symmetry: a figure that can be mapped onto itself by reflection in a line = 360/# of symmetrical lines 60, 120, 180 45, 90, 135, 180 180

17

18

19 Dilation

20 Given a figure; Prime is always on top
Reduction - original size to small B’ A B A B A’ B’ x x Y y B 1 2 1 1 15 1/2 A 9 AB’ AB 15 9 5 3 Enlargement- original size to large A B A B A’ B’ x x Y y 4 8 4 4 2

21 Examples


Download ppt "TRANSFORMATION. TRANSFORMATION Foldable PRIME Original New IN MATH TERMS…. P -> P’"

Similar presentations


Ads by Google