Presentation is loading. Please wait.

Presentation is loading. Please wait.

Trees "A tree may grow a thousand feet tall, but its leaves will return to its roots." -Chinese Proverb CLRS, Section 10.4.

Similar presentations


Presentation on theme: "Trees "A tree may grow a thousand feet tall, but its leaves will return to its roots." -Chinese Proverb CLRS, Section 10.4."— Presentation transcript:

1 Trees "A tree may grow a thousand feet tall, but its leaves will return to its roots." -Chinese Proverb CLRS, Section 10.4

2 What is a Tree? In computer science, a tree is a implementation-dependent data structure representing a hierarchical structure. A tree consists of nodes with a parent-child relation. Applications: Organization charts File systems Programming environments Computers”R”Us Sales R&D Manufacturing Laptops Desktops US International Europe Asia Canada CS Data Structures

3 Tree Terminology Root: node without parent (A)
Internal node: node with at least one child (A, B, C, F) External node (a.k.a. leaf ): node without children (E, I, J, K, G, H, D) Ancestors of a node: parent, grandparent, grand-grandparent, etc. Depth of a node: number of ancestors Height of a tree: maximum depth of any node (3) Descendant of a node: child, grandchild, etc. A B D C G H E F I J K sub-tree Sub-tree: tree consisting of a node and its descendants, grandchildren, etc. CS Data Structures

4 Tree Traversal A tree traversal visits the nodes of a tree in a systematic manner. Four types of traversal: Pre-order Post-order In-order Level-order pre-order post-order in-order level-order CS Data Structures

5 Pre-order Traversal In a pre-order traversal, a node is visited before its descendants. Application: Print a structured document. Algorithm preOrder(v) visit(v) for each child w of v preOrder (w) Make Money Fast! 1. Motivations References 2. Methods 2.1 Stock Fraud 2.2 Ponzi Scheme 1.1 Greed 1.2 Avidity 2.3 Bank Robbery 1 2 3 5 4 6 7 8 9 CS Data Structures

6 Pre-order Traversal 1 2 3 5 4 6 7 8 9 Make Money Fast! 1. Motivations
References 2. Methods 2.1 Stock Fraud 2.2 Ponzi Scheme 1.1 Greed 1.2 Avidity 2.3 Bank Robbery 1 2 3 5 4 6 7 8 9 Algorithm preOrder(v) visit(v) for each child w of v preOrder (w) preOrder(Make Money Fast!) visit(Make Money Fast!) // 1 preOrder(1. Motivations) // left child CS Data Structures

7 Pre-order Traversal 1 2 3 5 4 6 7 8 9 Make Money Fast! 1. Motivations
References 2. Methods 2.1 Stock Fraud 2.2 Ponzi Scheme 1.1 Greed 1.2 Avidity 2.3 Bank Robbery 1 2 3 5 4 6 7 8 9 Algorithm preOrder(v) visit(v) for each child w of v preOrder (w) preOrder(1. Motivations) visit(1. Motivations) // 2 preOrder(1.1 Greed) // left child CS Data Structures

8 Pre-order Traversal 1 2 3 5 4 6 7 8 9 Make Money Fast! 1. Motivations
References 2. Methods 2.1 Stock Fraud 2.2 Ponzi Scheme 1.1 Greed 1.2 Avidity 2.3 Bank Robbery 1 2 3 5 4 6 7 8 9 Algorithm preOrder(v) visit(v) for each child w of v preOrder (w) preOrder(1.1 Greed) visit(1.1 Greed) // 3 return // no children CS Data Structures

9 Pre-order Traversal 1 2 3 5 4 6 7 8 9 Make Money Fast! 1. Motivations
References 2. Methods 2.1 Stock Fraud 2.2 Ponzi Scheme 1.1 Greed 1.2 Avidity 2.3 Bank Robbery 1 2 3 5 4 6 7 8 9 Algorithm preOrder(v) visit(v) for each child w of v preOrder (w) preOrder(1. Motivation) preorder(1.2 Avidity) // right child CS Data Structures

10 Pre-order Traversal 1 2 3 5 4 6 7 8 9 Make Money Fast! 1. Motivations
References 2. Methods 2.1 Stock Fraud 2.2 Ponzi Scheme 1.1 Greed 1.2 Avidity 2.3 Bank Robbery 1 2 3 5 4 6 7 8 9 Algorithm preOrder(v) visit(v) for each child w of v preOrder (w) preOrder(1.2 Avidity) visit(1.2 Avidity) // 4 return // no children CS Data Structures

11 Pre-order Traversal 1 2 3 5 4 6 7 8 9 Make Money Fast! 1. Motivations
References 2. Methods 2.1 Stock Fraud 2.2 Ponzi Scheme 1.1 Greed 1.2 Avidity 2.3 Bank Robbery 1 2 3 5 4 6 7 8 9 Algorithm preOrder(v) visit(v) for each child w of v preOrder (w) preOrder(1. Motivations) return // all children visited CS Data Structures

12 Pre-order Traversal 1 2 3 5 4 6 7 8 9 Make Money Fast! 1. Motivations
References 2. Methods 2.1 Stock Fraud 2.2 Ponzi Scheme 1.1 Greed 1.2 Avidity 2.3 Bank Robbery 1 2 3 5 4 6 7 8 9 Algorithm preOrder(v) visit(v) for each child w of v preOrder (w) preOrder(Make Money Fast!) preOrder(2. Methods) // middle child CS Data Structures

13 Pre-order Traversal 1 2 3 5 4 6 7 8 9 Make Money Fast! 1. Motivations
References 2. Methods 2.1 Stock Fraud 2.2 Ponzi Scheme 1.1 Greed 1.2 Avidity 2.3 Bank Robbery 1 2 3 5 4 6 7 8 9 Algorithm preOrder(v) visit(v) for each child w of v preOrder (w) preOrder(2. Methods) visit(2. Methods) // 5 preOrder(2.1 Stock Fraud) // left child CS Data Structures

14 Pre-order Traversal 1 2 3 5 4 6 7 8 9 Make Money Fast! 1. Motivations
References 2. Methods 2.1 Stock Fraud 2.2 Ponzi Scheme 1.1 Greed 1.2 Avidity 2.3 Bank Robbery 1 2 3 5 4 6 7 8 9 Algorithm preOrder(v) visit(v) for each child w of v preOrder (w) preOrder(2.1 Stock Fraud) visit(2.1 Stock Fraud) // 6 return // no children CS Data Structures

15 Pre-order Traversal 1 2 3 5 4 6 7 8 9 Make Money Fast! 1. Motivations
References 2. Methods 2.1 Stock Fraud 2.2 Ponzi Scheme 1.1 Greed 1.2 Avidity 2.3 Bank Robbery 1 2 3 5 4 6 7 8 9 Algorithm preOrder(v) visit(v) for each child w of v preOrder (w) preOrder(2. Methods) preOrder(2.2 Ponzi Scheme) // middle child CS Data Structures

16 Pre-order Traversal 1 2 3 5 4 6 7 8 9 Make Money Fast! 1. Motivations
References 2. Methods 2.1 Stock Fraud 2.2 Ponzi Scheme 1.1 Greed 1.2 Avidity 2.3 Bank Robbery 1 2 3 5 4 6 7 8 9 Algorithm preOrder(v) visit(v) for each child w of v preOrder (w) preOrder(2.2 Ponzi Scheme) visit(2.2 Ponzi Scheme) // 7 return // no children CS Data Structures

17 Pre-order Traversal 1 2 3 5 4 6 7 8 9 Make Money Fast! 1. Motivations
References 2. Methods 2.1 Stock Fraud 2.2 Ponzi Scheme 1.1 Greed 1.2 Avidity 2.3 Bank Robbery 1 2 3 5 4 6 7 8 9 Algorithm preOrder(v) visit(v) for each child w of v preOrder (w) preOrder(2. Methods) preOrder(2.3 Bank Robbery) // right child CS Data Structures

18 Pre-order Traversal 1 2 3 5 4 6 7 8 9 Make Money Fast! 1. Motivations
References 2. Methods 2.1 Stock Fraud 2.2 Ponzi Scheme 1.1 Greed 1.2 Avidity 2.3 Bank Robbery 1 2 3 5 4 6 7 8 9 Algorithm preOrder(v) visit(v) for each child w of v preOrder (w) preOrder(2.3 Bank Robbery) visit(2.3 Bank Robbery) // 8 return // no children CS Data Structures

19 Pre-order Traversal 1 2 3 5 4 6 7 8 9 Make Money Fast! 1. Motivations
References 2. Methods 2.1 Stock Fraud 2.2 Ponzi Scheme 1.1 Greed 1.2 Avidity 2.3 Bank Robbery 1 2 3 5 4 6 7 8 9 Algorithm preOrder(v) visit(v) for each child w of v preOrder (w) preOrder(2. Methods) return // all children visited CS Data Structures

20 Pre-order Traversal 1 2 3 5 4 6 7 8 9 Make Money Fast! 1. Motivations
References 2. Methods 2.1 Stock Fraud 2.2 Ponzi Scheme 1.1 Greed 1.2 Avidity 2.3 Bank Robbery 1 2 3 5 4 6 7 8 9 Algorithm preOrder(v) visit(v) for each child w of v preOrder (w) preOrder(Make Money Fast!) preOrder(3. References) // right child CS Data Structures

21 Pre-order Traversal 1 2 3 5 4 6 7 8 9 Make Money Fast! 1. Motivations
References 2. Methods 2.1 Stock Fraud 2.2 Ponzi Scheme 1.1 Greed 1.2 Avidity 2.3 Bank Robbery 1 2 3 5 4 6 7 8 9 Algorithm preOrder(v) visit(v) for each child w of v preOrder (w) preOrder(3. References) return // no children CS Data Structures

22 Pre-order Traversal 1 2 3 5 4 6 7 8 9 Make Money Fast! 1. Motivations
References 2. Methods 2.1 Stock Fraud 2.2 Ponzi Scheme 1.1 Greed 1.2 Avidity 2.3 Bank Robbery 1 2 3 5 4 6 7 8 9 Algorithm preOrder(v) visit(v) for each child w of v preOrder (w) preOrder(Make Money Fast!) return // all children visited CS Data Structures

23 Pre-order Traversal 1 2 3 5 4 6 7 8 9 Make Money Fast! 1. Motivations
References 2. Methods 2.1 Stock Fraud 2.2 Ponzi Scheme 1.1 Greed 1.2 Avidity 2.3 Bank Robbery 1 2 3 5 4 6 7 8 9 Algorithm preOrder(v) visit(v) for each child w of v preOrder (w) preOrder(Make Money Fast!) Done. CS Data Structures

24 Post-order Traversal In a post-order traversal, a node is visited after its descendants. Application: Compute space used by files in a directory and its sub-directories. Algorithm postOrder(v) for each child w of v postOrder (w) visit(v) 9 cs16/ 8 3 7 todo.txt 1K homeworks/ programs/ 1 2 4 5 6 h1c.doc 3K h1nc.doc 2K DDR.java 10K Stocks.java 25K Robot.java 20K CS Data Structures

25 Post-order Traversal 9 3 1 7 2 4 5 6 8 cs16/ homeworks/ todo.txt 1K
programs/ DDR.java 10K Stocks.java 25K h1c.doc 3K h1nc.doc 2K Robot.java 20K 9 3 1 7 2 4 5 6 8 Algorithm postOrder(v) for each child w of v postOrder (w) visit(v) postOrder(cs16/) postOrder(homeworks/) // left child CS Data Structures

26 Post-order Traversal 9 3 1 7 2 4 5 6 8 cs16/ homeworks/ todo.txt 1K
programs/ DDR.java 10K Stocks.java 25K h1c.doc 3K h1nc.doc 2K Robot.java 20K 9 3 1 7 2 4 5 6 8 Algorithm postOrder(v) for each child w of v postOrder (w) visit(v) postOrder(homeworks/) postOrder(h1c.doc/) // left child CS Data Structures

27 Post-order Traversal 9 3 1 7 2 4 5 6 8 cs16/ homeworks/ todo.txt 1K
programs/ DDR.java 10K Stocks.java 25K h1c.doc 3K h1nc.doc 2K Robot.java 20K 9 3 1 7 2 4 5 6 8 Algorithm postOrder(v) for each child w of v postOrder (w) visit(v) postOrder(h1c.doc/) // no children visit(h1c.doc) // 1 CS Data Structures

28 Post-order Traversal 9 3 1 7 2 4 5 6 8 cs16/ homeworks/ todo.txt 1K
programs/ DDR.java 10K Stocks.java 25K h1c.doc 3K h1nc.doc 2K Robot.java 20K 9 3 1 7 2 4 5 6 8 Algorithm postOrder(v) for each child w of v postOrder (w) visit(v) postOrder(homeworks/) postOrder(h1nc.doc/) // right child CS Data Structures

29 Post-order Traversal 9 3 1 7 2 4 5 6 8 cs16/ homeworks/ todo.txt 1K
programs/ DDR.java 10K Stocks.java 25K h1c.doc 3K h1nc.doc 2K Robot.java 20K 9 3 1 7 2 4 5 6 8 Algorithm postOrder(v) for each child w of v postOrder (w) visit(v) postOrder(h1nc.doc/) // no children visit(h1nc.doc) // 2 CS Data Structures

30 Post-order Traversal 9 3 1 7 2 4 5 6 8 cs16/ homeworks/ todo.txt 1K
programs/ DDR.java 10K Stocks.java 25K h1c.doc 3K h1nc.doc 2K Robot.java 20K 9 3 1 7 2 4 5 6 8 Algorithm postOrder(v) for each child w of v postOrder (w) visit(v) postOrder(homeworks/) // all children visited visit(homeworks/) // 3 CS Data Structures

31 Post-order Traversal 9 3 1 7 2 4 5 6 8 cs16/ homeworks/ todo.txt 1K
programs/ DDR.java 10K Stocks.java 25K h1c.doc 3K h1nc.doc 2K Robot.java 20K 9 3 1 7 2 4 5 6 8 Algorithm postOrder(v) for each child w of v postOrder (w) visit(v) postOrder(cs16/) postOrder(programs/) // middle child CS Data Structures

32 Post-order Traversal 9 3 1 7 2 4 5 6 8 cs16/ homeworks/ todo.txt 1K
programs/ DDR.java 10K Stocks.java 25K h1c.doc 3K h1nc.doc 2K Robot.java 20K 9 3 1 7 2 4 5 6 8 Algorithm postOrder(v) for each child w of v postOrder (w) visit(v) postOrder(programs/) postOrder(DDR.java/) // left child CS Data Structures

33 Post-order Traversal 9 3 1 7 2 4 5 6 8 cs16/ homeworks/ todo.txt 1K
programs/ DDR.java 10K Stocks.java 25K h1c.doc 3K h1nc.doc 2K Robot.java 20K 9 3 1 7 2 4 5 6 8 Algorithm postOrder(v) for each child w of v postOrder (w) visit(v) postOrder(DDR.java) // no children visit(DDR.java) // 4 CS Data Structures

34 Post-order Traversal 9 3 1 7 2 4 5 6 8 cs16/ homeworks/ todo.txt 1K
programs/ DDR.java 10K Stocks.java 25K h1c.doc 3K h1nc.doc 2K Robot.java 20K 9 3 1 7 2 4 5 6 8 Algorithm postOrder(v) for each child w of v postOrder (w) visit(v) postOrder(programs/) postOrder(Stocks.java/) // middle child CS Data Structures

35 Post-order Traversal 9 3 1 7 2 4 5 6 8 cs16/ homeworks/ todo.txt 1K
programs/ DDR.java 10K Stocks.java 25K h1c.doc 3K h1nc.doc 2K Robot.java 20K 9 3 1 7 2 4 5 6 8 Algorithm postOrder(v) for each child w of v postOrder (w) visit(v) postOrder(Stocks.java) // no children visit(Stock.java) // 5 CS Data Structures

36 Post-order Traversal 9 3 1 7 2 4 5 6 8 cs16/ homeworks/ todo.txt 1K
programs/ DDR.java 10K Stocks.java 25K h1c.doc 3K h1nc.doc 2K Robot.java 20K 9 3 1 7 2 4 5 6 8 Algorithm postOrder(v) for each child w of v postOrder (w) visit(v) postOrder(programs/) postOrder(Robot.java/) // right child CS Data Structures

37 Post-order Traversal 9 3 1 7 2 4 5 6 8 cs16/ homeworks/ todo.txt 1K
programs/ DDR.java 10K Stocks.java 25K h1c.doc 3K h1nc.doc 2K Robot.java 20K 9 3 1 7 2 4 5 6 8 Algorithm postOrder(v) for each child w of v postOrder (w) visit(v) postOrder(Robot.java) // no children visit(Robot.java) // 6 CS Data Structures

38 Post-order Traversal 9 3 1 7 2 4 5 6 8 cs16/ homeworks/ todo.txt 1K
programs/ DDR.java 10K Stocks.java 25K h1c.doc 3K h1nc.doc 2K Robot.java 20K 9 3 1 7 2 4 5 6 8 Algorithm postOrder(v) for each child w of v postOrder (w) visit(v) postOrder(programs/) // all children visited visit(programs/) // 7 CS Data Structures

39 Post-order Traversal 9 3 1 7 2 4 5 6 8 cs16/ homeworks/ todo.txt 1K
programs/ DDR.java 10K Stocks.java 25K h1c.doc 3K h1nc.doc 2K Robot.java 20K 9 3 1 7 2 4 5 6 8 Algorithm postOrder(v) for each child w of v postOrder (w) visit(v) postOrder(cs16/) postOrder(todo.txt) // right child CS Data Structures

40 Post-order Traversal 9 3 1 7 2 4 5 6 8 cs16/ homeworks/ todo.txt 1K
programs/ DDR.java 10K Stocks.java 25K h1c.doc 3K h1nc.doc 2K Robot.java 20K 9 3 1 7 2 4 5 6 8 Algorithm postOrder(v) for each child w of v postOrder (w) visit(v) postOrder(todo.txt) // no children visit(todo.txt) // 8 CS Data Structures

41 Post-order Traversal 9 3 1 7 2 4 5 6 8 cs16/ homeworks/ todo.txt 1K
programs/ DDR.java 10K Stocks.java 25K h1c.doc 3K h1nc.doc 2K Robot.java 20K 9 3 1 7 2 4 5 6 8 Algorithm postOrder(v) for each child w of v postOrder (w) visit(v) postOrder(cs16/) // all children visited visit(cs16/) // 9 CS Data Structures

42 Post-order Traversal 9 3 1 7 2 4 5 6 8 cs16/ homeworks/ todo.txt 1K
programs/ DDR.java 10K Stocks.java 25K h1c.doc 3K h1nc.doc 2K Robot.java 20K 9 3 1 7 2 4 5 6 8 Algorithm postOrder(v) for each child w of v postOrder (w) visit(v) Done. CS Data Structures

43 In-order Traversal In an in-order traversal a node is visited after its left sub-tree and before its right sub-tree. Applies to Binary Trees only. Application: Draw a binary tree. Algorithm inOrder(v) if left (v) ≠ null inOrder (left (v)) visit(v) if right(v) ≠ null inOrder (right (v)) 3 1 2 5 6 7 9 8 4 A B C D E F G H I CS Data Structures

44 In-order Traversal A B C D E F G H I 3 1 2 5 6 7 9 8 4
Algorithm inOrder(v) if left (v) ≠ null inOrder (left (v)) visit(v) if right(v) ≠ null inOrder (right (v)) inOrder(A) inOrder(B) CS Data Structures

45 In-order Traversal A B C D E F G H I 3 1 2 5 6 7 9 8 4
Algorithm inOrder(v) if left (v) ≠ null inOrder (left (v)) visit(v) if right(v) ≠ null inOrder (right (v)) inOrder(B) inOrder(D) CS Data Structures

46 In-order Traversal A B C D E F G H I 3 1 2 5 6 7 9 8 4
Algorithm inOrder(v) if left (v) ≠ null inOrder (left (v)) visit(v) if right(v) ≠ null inOrder (right (v)) inOrder(D) // no left children visit(D) // 1 // no right children return CS Data Structures

47 In-order Traversal A B C D E F G H I 3 1 2 5 6 7 9 8 4
Algorithm inOrder(v) if left (v) ≠ null inOrder (left (v)) visit(v) if right(v) ≠ null inOrder (right (v)) inOrder(B) // left child visited visit(B) // 2 inOrder(E) CS Data Structures

48 In-order Traversal A B C D E F G H I 3 1 2 5 6 7 9 8 4
Algorithm inOrder(v) if left (v) ≠ null inOrder (left (v)) visit(v) if right(v) ≠ null inOrder (right (v)) inOrder(E) inOrder(H) CS Data Structures

49 In-order Traversal A B C D E F G H I 3 1 2 5 6 7 9 8 4
Algorithm inOrder(v) if left (v) ≠ null inOrder (left (v)) visit(v) if right(v) ≠ null inOrder (right (v)) inOrder(H) // no left children visit(H) // 3 // no right children return CS Data Structures

50 In-order Traversal A B C D E F G H I 3 1 2 5 6 7 9 8 4
Algorithm inOrder(v) if left (v) ≠ null inOrder (left (v)) visit(v) if right(v) ≠ null inOrder (right (v)) inOrder(E) // left child visited visit(E) // 4 inOrder(I) CS Data Structures

51 In-order Traversal A B C D E F G H I 3 1 2 5 6 7 9 8 4
Algorithm inOrder(v) if left (v) ≠ null inOrder (left (v)) visit(v) if right(v) ≠ null inOrder (right (v)) inOrder(I) // no left children visit(I) // 5 // no right children return CS Data Structures

52 In-order Traversal A B C D E F G H I 3 1 2 5 6 7 9 8 4
Algorithm inOrder(v) if left (v) ≠ null inOrder (left (v)) visit(v) if right(v) ≠ null inOrder (right (v)) inOrder(E) // right children visited return CS Data Structures

53 In-order Traversal A B C D E F G H I 3 1 2 5 6 7 9 8 4
Algorithm inOrder(v) if left (v) ≠ null inOrder (left (v)) visit(v) if right(v) ≠ null inOrder (right (v)) inOrder(B) // right children visited return CS Data Structures

54 In-order Traversal A B C D E F G H I 3 1 2 5 6 7 9 8 4
Algorithm inOrder(v) if left (v) ≠ null inOrder (left (v)) visit(v) if right(v) ≠ null inOrder (right (v)) inOrder(A) // left child visited visit(A) // 6 inOrder(C) CS Data Structures

55 In-order Traversal A B C D E F G H I 3 1 2 5 6 7 9 8 4
Algorithm inOrder(v) if left (v) ≠ null inOrder (left (v)) visit(v) if right(v) ≠ null inOrder (right (v)) inOrder(C) inOrder(F) CS Data Structures

56 In-order Traversal A B C D E F G H I 3 1 2 5 6 7 9 8 4
Algorithm inOrder(v) if left (v) ≠ null inOrder (left (v)) visit(v) if right(v) ≠ null inOrder (right (v)) inOrder(F) // no left children visit(F) // 7 // no right children return CS Data Structures

57 In-order Traversal A B C D E F G H I 3 1 2 5 6 7 9 8 4
Algorithm inOrder(v) if left (v) ≠ null inOrder (left (v)) visit(v) if right(v) ≠ null inOrder (right (v)) inOrder(C) // left child visited visit(C) // 8 inOrder(G) CS Data Structures

58 In-order Traversal A B C D E F G H I 3 1 2 5 6 7 9 8 4
Algorithm inOrder(v) if left (v) ≠ null inOrder (left (v)) visit(v) if right(v) ≠ null inOrder (right (v)) inOrder(G) // no left children visit(G) // 9 // no right children return CS Data Structures

59 In-order Traversal A B C D E F G H I 3 1 2 5 6 7 9 8 4
Algorithm inOrder(v) if left (v) ≠ null inOrder (left (v)) visit(v) if right(v) ≠ null inOrder (right (v)) inOrder(C) // right child visited return CS Data Structures

60 In-order Traversal A B C D E F G H I 3 1 2 5 6 7 9 8 4
Algorithm inOrder(v) if left (v) ≠ null inOrder (left (v)) visit(v) if right(v) ≠ null inOrder (right (v)) inOrder(A) // right child visited return CS Data Structures

61 In-order Traversal A B C D E F G H I 3 1 2 5 6 7 9 8 4
Algorithm inOrder(v) if left (v) ≠ null inOrder (left (v)) visit(v) if right(v) ≠ null inOrder (right (v)) Done. CS Data Structures

62 Level-order Traversal
In a level-order traversal, all nodes at the same depth are visited from left to right, then all the nodes at the next depth are visited, etc. Application: Breadth-first search. 1 Algorithm levelOrder(v) Q ← v while !Q.empty w ← Q.dequeue Q.enqueue(left (w)) Q.enqueue(right (w)) visit(w) A B C F G D E 2 3 4 5 6 7 CS Data Structures

63 Level-order Traversal
B C F G D E 3 1 2 5 6 7 4 Algorithm levelOrder(v) Q ← v while !Q.empty w ← Q.dequeue Q.enqueue(left (w)) Q.enqueue(right (w)) visit(w) levelOrder(A) Q ← A Q not empty w ← A // Q empty Q.enqueue(B) // Q = B Q.enqueue(C) // Q = B C visit(A) // 1 CS Data Structures

64 Level-order Traversal
B C F G D E 3 1 2 5 6 7 4 Algorithm levelOrder(v) Q ← v while !Q.empty w ← Q.dequeue Q.enqueue(left (w)) Q.enqueue(right (w)) visit(w) levelOrder(A) Q not empty w ← B // Q = C Q.enqueue(D) // Q = C D Q.enqueue(E) // Q = C D E visit(B) // 2 CS Data Structures

65 Level-order Traversal
B C F G D E 3 1 2 5 6 7 4 Algorithm levelOrder(v) Q ← v while !Q.empty w ← Q.dequeue Q.enqueue(left (w)) Q.enqueue(right (w)) visit(w) levelOrder(A) Q not empty w ← C // Q = D E Q.enqueue(F) // Q = D E F Q.enqueue(G) // Q = D E F G visit(C) // 3 CS Data Structures

66 Level-order Traversal
B C F G D E 3 1 2 5 6 7 4 Algorithm levelOrder(v) Q ← v while !Q.empty w ← Q.dequeue Q.enqueue(left (w)) Q.enqueue(right (w)) visit(w) levelOrder(A) Q not empty w ← D // Q = E F G Q.enqueue(null) // Q = E F G Q.enqueue(null) // Q = E F G visit(D) // 4 CS Data Structures

67 Level-order Traversal
B C F G D E 3 1 2 5 6 7 4 Algorithm levelOrder(v) Q ← v while !Q.empty w ← Q.dequeue Q.enqueue(left (w)) Q.enqueue(right (w)) visit(w) levelOrder(A) Q not empty w ← E // Q = F G Q.enqueue(null) // Q = F G Q.enqueue(null) // Q = F G visit(E) // 5 CS Data Structures

68 Level-order Traversal
B C F G D E 3 1 2 5 6 7 4 Algorithm levelOrder(v) Q ← v while !Q.empty w ← Q.dequeue Q.enqueue(left (w)) Q.enqueue(right (w)) visit(w) levelOrder(A) Q not empty w ← F // Q = G Q.enqueue(null) // Q = G Q.enqueue(null) // Q = G visit(F) // 6 CS Data Structures

69 Level-order Traversal
B C F G D E 3 1 2 5 6 7 4 Algorithm levelOrder(v) Q ← v while !Q.empty w ← Q.dequeue Q.enqueue(left (w)) Q.enqueue(right (w)) visit(w) levelOrder(A) Q not empty w ← G // Q = empty Q.enqueue(null) // Q = empty Q.enqueue(null) // Q = empty visit(G) // 7 CS Data Structures

70 Level-order Traversal
B C F G D E 3 1 2 5 6 7 4 Algorithm levelOrder(v) Q ← v while !Q.empty w ← Q.dequeue Q.enqueue(left (w)) Q.enqueue(right (w)) visit(w) levelOrder(A) Q is empty return CS Data Structures

71 Traversal Implementation
Pre-order, in-order, and post-order traversals. Big-O time and space? Level-order traversal using a queue. Level-order traversal without a queue. CS Data Structures

72 Binary Trees A binary tree is a tree with the following properties:
Each internal node has at most two children (exactly two for proper binary trees). The children of a node are an ordered pair. We call the children of an internal node left child and right child. A B C F G D E H I Applications: arithmetic expressions decision processes searching CS Data Structures

73 Types of Binary Trees full binary tree: A binary tree is which each node was exactly 2 or 0 children. complete binary tree: A binary tree in which every level, except possibly the deepest, is completely filled. At depth n, the height of the tree, all nodes are as far left as possible. perfect binary tree: A binary tree with all leaf nodes at the same depth. All internal nodes have exactly two children. A perfect binary tree has the maximum number of nodes for a given height. G E D B A C F E D B A C F C A F G E D B

74 Question 1 What is the maximum height of a full binary tree with 11 nodes? 1 3 5 7 Not possible to construct a full binary tree with 11 nodes. CS Data Structures

75 Question 1 What is the maximum height of a full binary tree with 11 nodes? 1 3 5 7 Not possible to construct a full binary tree with 11 nodes. CS Data Structures

76 Question 2 What is the height of a complete binary tree that contains n nodes? 1 log 2 𝑛 𝑛 𝑛 log 2 𝑛 CS Data Structures

77 Question 2 What is the height of a complete binary tree that contains n nodes? 1 log 2 𝑛 𝑛 𝑛 log 2 𝑛 CS Data Structures

78 Arithmetic Expression Tree
Binary tree associated with an arithmetic expression. internal nodes: operators external nodes: operands Example: Expression tree for this arithmetic expression: (2  (a - 1) + (3  b)) + - 2 a 1 3 b CS Data Structures

79 Evaluate Arithmetic Expressions
Specialization of a post-order traversal. Recursive method returning the value of a sub-tree. When visiting an internal node, combine the values of the sub-trees. Algorithm evalExpr(v) if isExternal (v) return v.element () else x  evalExpr(left(v)) y  evalExpr(right(v))   operator stored at v return x  y + - 2 5 1 3 ((2  (5 - 1)) + (3  2)) = 14 CS Data Structures

80 Print Arithmetic Expressions
Specialization of an in-order traversal. Print operand or operator when visiting node. Print “(“ before traversing left subtree. Print “)“ after traversing right subtree. Algorithm printExpression(v) if left (v) ≠ null print(“(’’) inOrder (left(v)) print(v.element ()) if right(v) ≠ null inOrder (right(v)) print (“)’’) + - 2 a 1 3 b ((2  (a - 1)) + (3  b)) CS Data Structures

81 Decision Tree Binary tree associated with a decision process.
internal nodes: Questions with yes/no answer. external nodes: Decisions Example: Whether to check . CS Data Structures

82 Example: Decision Tree
What is the maximum of these numbers: x1, x2, x3? x1 > x2 x2 > x3 x1 > x3 x3 x1 x2 No Yes No Yes No Yes CS Data Structures

83 Properties of Binary Trees
Notation: n - number of nodes e - number of external nodes (leaves) i - number of internal nodes h - height Properties: e = i + 1 n = 2e - 1 h  i h  (n - 1)/2 e  2h h  log2 e h  log2(n + 1) - 1 CS Data Structures

84 Tree Searches Algorithms for searching tree data structures.
Breadth-First Search: Starting at the root, explores all the nodes on a given level before exploring nodes on the next level. A form of Level-Order Traversal. Usually implemented with a Queue. Depth-First Search: Starting at the root, explores a node one level down. Continues searching, moving down one level down, until reach a leaf. Then backtrack to last node with a non-empty child node and repeat the search. A form of Pre-Order Traversal. Usually implemented with a Stack. CS Data Structures

85 Breadth-First Search Algorithm BFS(r) // root node of tree
Q.enqueue(r) mark r as visited while(!Q.empty) v ← Q.dequeue for all children w of v if w is not visited Q.enqueue(w) mark w as visited CS Data Structures

86 Example: Breadth-First Search
8 3 10 1 6 13 4 7 14 CS Data Structures

87 Depth-First Search Algorithm DFS(r) // root node of tree S.push(r)
mark s as visited while(!S.empty) v ← S.pop for all children w of v if w is not visited S.push(w) mark w as visited CS Data Structures

88 Example: Depth-First Search
8 3 10 1 6 13 4 7 14 CS Data Structures

89 Linked Structure for Trees
A node is represented by an object storing: Element Parent node Sequence of children nodes B A D F C E B D A C E F CS Data Structures

90 Linked Structure for Binary Trees
A node is represented by an object storing: Element Parent node Left child node Right child node B A D C E B D A C E CS Data Structures

91 Array-Based Representation of Binary Trees
3 1 2 5 6 4 9 10 A H G F E D C B J Nodes are stored in an array A A B D G H 1 2 9 10 Node v is stored at A[rank(v)] rank(root) = 0 If node is the left child of parent(node), rank(node) = 2*rank(parent(node)) + 1 If node is the right child of parent(node), rank(node) = 2*rank(parent(node)) + 2 CS Data Structures

92 CS Data Structures

93 Tree ADT We use positions to abstract nodes Generic methods:
integer size() boolean isEmpty() Iterator iterator() Iterable positions() Accessor methods: position root() position parent(p) Iterable children(p) Integer numChildren(p) Query methods: boolean isInternal(p) boolean isExternal(p) boolean isRoot(p) Additional update methods may be defined by data structures implementing the Tree ADT CS Data Structures

94 Java Interface Methods for a Tree interface: CS Data Structures

95 BinaryTree ADT The BinaryTree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT Additional methods: position left(p) position right(p) position sibling(p) The above methods return null when there is no left, right, or sibling of p, respectively Update methods may be defined by data structures implementing the BinaryTree ADT CS Data Structures

96 Euler Tour Traversal +   2 - 3 2 5 1
Generic traversal of a binary tree Includes a special cases the preorder, postorder and inorder traversals Walk around the tree and visit each node three times: on the left (preorder) from below (inorder) on the right (postorder) + L R B 2 - 3 2 5 1 CS Data Structures


Download ppt "Trees "A tree may grow a thousand feet tall, but its leaves will return to its roots." -Chinese Proverb CLRS, Section 10.4."

Similar presentations


Ads by Google