Presentation is loading. Please wait.

Presentation is loading. Please wait.

GEOMETRIC SEQUENCES These are sequences where the ratio of successive terms of a sequence is always the same number. This number is called the common.

Similar presentations


Presentation on theme: "GEOMETRIC SEQUENCES These are sequences where the ratio of successive terms of a sequence is always the same number. This number is called the common."— Presentation transcript:

1 GEOMETRIC SEQUENCES These are sequences where the ratio of successive terms of a sequence is always the same number. This number is called the common ratio.

2 1, 2, 4, 8, r = 2 Notice in this sequence that if we find the ratio of any term to the term before it (divide them) we always get is then called the common ratio and is denoted with the letter r. To get to the next term in the sequence we would multiply by 2 so a recursive formula for this sequence is:

3  2 r = 2 a = 1 1, 2, 4, 8, Each time you want another term in the sequence you’d multiply by r. This would mean the second term was the first term times r. The third term is the first term multiplied by r multiplied by r (r squared). The fourth term is the first term multiplied by r multiplied by r multiplied by r (r cubed). So you can see to get the nth term we’d take the first term and multiply r (n - 1) times. Try this to get the 5th term.

4 Let’s look at a formula for a geometric sequence and see what it tells us.
you can see what the common ratio will be in the formula This factor gets us started in the right place. With n = 1 we’d get -2 for the first term Subbing in the set of positive integers we get: What is the common ratio? -2, -6, -18, -54 … r = 3 3n-1 would generate the powers of 3. With the - 2 in front, the first term would be -2(30) =- 2. What would you do if you wanted the sequence -4, -12, -36, -108, . . .?

5 Find the nth term of the geometric sequence when a = -2 and r =4
If we use 4n-1 we will generate a sequence whose common ratio is 4, but this sequence starts at 1 (put 1 in for n to get first term to see this). We want ours to start at -2. We then need the “compensating factor”. We need to multiply by -2. Check it out by putting in the first few positive integers and verifying that it generates our sequence. Sure enough---it starts at -2 and has a common ratio of 4 -2, -8, -32, -128, . . .

6 Find the 8th term of 0.4, , . . . To find the common ratio, take any term and divide it by the term in front


Download ppt "GEOMETRIC SEQUENCES These are sequences where the ratio of successive terms of a sequence is always the same number. This number is called the common."

Similar presentations


Ads by Google