Download presentation
Presentation is loading. Please wait.
1
Physical Chemistry Week 5 & 6
2
Uncertainty principle for energy and time
From time-dependent S.E. πβ π ππ‘ π= π» π, we define π» =πβ π ππ‘ β΅ π» ,π‘ π= π» π‘π βπ‘ π» π =πβπ β΄ π» ,π‘ =πβ So that βπΈβ
βπ‘β₯β/2 If a quantum state has definite energy, i.e. βπΈ=0, then the life time of this state will be βπ‘ββ In reality, energy level is broadened, and βπ‘~β/βπΈ is regarded as life time of the energy level
3
Translation motion β 1D particle-in-a-box model
One particle with mass π confined in a box 0,πΏ π» =β β 2 2π d 2 d π₯ 2 +π π₯ where π π₯ = 0,& 0<π₯<πΏ +β,& π₯β€0 ππ π₯β₯πΏ Within 0,πΏ , the S.E. has solution π=π΄ π πππ₯ +π΅ π βπππ₯ , π= 2ππΈ /β Outside 0,πΏ , π=0
4
Continued Since wave function should be continuous, we impose boundary conditions π 0 =π πΏ =0 π 0 =π΄+π΅=0βπ΄=βπ΅ π πΏ =βπ΅ π πππΏ +π΅ π βπππΏ =β2ππ΅ sin ππΏ =0βππΏ=ππ, π=1,2,β¦ So that within 0,πΏ , π π₯ =β2ππ΅ sin ππ πΏ π₯ After normalization, π π π₯ = 2 πΏ sin ππ πΏ π₯ , π=1,2,β¦ Energy πΈ π = β 2 π 2 2π = π 2 π 2 β 2 2π πΏ 2 , π=1,2,β¦
5
Orthogonality For πβ π, the following integral should be zero 0 πΏ dπ₯ π π β π π &= 2 πΏ 0 πΏ dπ₯ sin πππ₯ πΏ sin πππ₯ πΏ &=β 1 πΏ 0 πΏ dπ₯ cos π+π ππ₯ πΏ β cos πβπ ππ₯ πΏ &=β 1 πΏ πΏ π+π π β
sin π+π ππ₯ πΏ 0 πΏ β πΏ πβπ π β
sin πβπ ππ₯ πΏ 0 πΏ &=0
6
Check uncertainty principle for ground state
We define uncertainty of an operator π΄ as βπ΄&= π΄ β π΄ 2 &= π΄ 2 β2 π΄ π΄ + π΄ 2 &= π΄ 2 β2 π΄ π΄ + π΄ 2 &= π΄ 2 β π΄ 2
7
Continued π₯ &= 2 πΏ 0 πΏ π₯ sin 2 ππ₯ πΏ dπ₯ &= 1 πΏ 0 πΏ π₯ 1β cos 2ππ₯ πΏ dπ₯ &= πΏ 2 β 1 πΏ 0 πΏ π₯ cos 2ππ₯ πΏ dπ₯ &= πΏ 2
8
Continued π₯ 2 &= 2 πΏ 0 πΏ π₯ 2 sin 2 ππ₯ πΏ dπ₯ &= 1 πΏ 0 πΏ π₯ 2 1β cos 2ππ₯ πΏ dπ₯ &= πΏ 2 3 β 1 πΏ 0 πΏ π₯ 2 cos 2ππ₯ πΏ dπ₯ &= πΏ 2 3 β πΏ 2 2 π 2
9
Continued π &= 2β ππΏ β
π πΏ 0 πΏ sin ππ₯ πΏ cos ππ₯ πΏ dπ₯ &= βπ π πΏ πΏ sin 2ππ₯ πΏ dπ₯ &=0
10
Continued π 2 &= 2 β 2 πΏ β
π 2 πΏ πΏ sin 2 ππ₯ πΏ dπ₯ &= π 2 β 2 πΏ πΏ 1β cos 2ππ₯ πΏ dπ₯ &= π 2 β 2 πΏ 2
11
Continued βπ₯&= πΏ 2 3 β πΏ 2 2 π 2 β πΏ 2 2 &= πΏ 2π π 2 3 β2 βπ&= πβ πΏ So βπ₯β
βπ= β 2 β
π 2 3 β2 β1.136β
β 2 > β 2
12
Appendix Let πΌ π = 0 πΏ sin ππ₯ dπ₯ = 1β cos ππΏ π dπΌ π dπ &= 0 πΏ π₯ cos ππ₯ dπ₯ &= πΏ sin ππΏ π + cos ππΏ β1 π 2 So 0 πΏ π₯ cos 2ππ₯ πΏ dπ₯ = dπΌ π dπ π=2π/πΏ =0
13
Continued Let π½ π = 0 πΏ cos ππ₯ dπ₯ = sin ππΏ π d 2 π½ π dπ 2 &=β 0 πΏ π₯ 2 cos ππ₯ dπ₯ &=β πΏ 2 sin ππΏ π β 2πΏ cos ππΏ π sin ππΏ π 3 So 0 πΏ π₯ 2 cos 2ππ₯ πΏ dπ₯ =β d 2 π½ π dπ 2 π=2π/πΏ = πΏ 3 2 π 2
14
Review One particle in a 1D box π π π₯ = 2 πΏ sin πππ₯ πΏ π=1,2,3,β¦
Wave Function: π π π₯ = 2 πΏ sin πππ₯ πΏ π=1,2,3,β¦ n=1 Energy Levels: x=L π= πΈ 3 = 9 π 2 β 2 2π πΏ 2 n=3 n=2 π= πΈ 2 = 2π 2 β 2 π πΏ 2 π= πΈ 1 = π 2 β 2 2π πΏ Ground State x
15
One particle in a 2D box Hamiltonian operator:
y=L2 π» =β β 2 2π ( π 2 π π₯ π 2 π π¦ 2 )+π(π₯,π¦) m π π₯,π¦ = 0,& 0<π₯< πΏ 1 πππ 0<π¦< πΏ 2 +β,& ππ‘βπππ€ππ π y=0 x=0 x=L1
16
SchrΓΆdinger Equation π» π π₯,π¦ =πΈπ π₯,π¦ Within 0<π₯< πΏ 1 and 0<π¦< πΏ 2 , β β 2 2π π 2 π π₯,π¦ π π₯ 2 + π 2 π π₯,π¦ π π¦ 2 =πΈπ π₯,π¦ Boundary conditions π 0,π¦ =π πΏ 1 ,π¦ =π π₯,0 =π π₯, πΏ 2 =0
17
Separation of variables
Let π π₯,π¦ =π π₯ π π¦ and plug this equation into S.E., we get β β 2 2π d 2 π d π₯ 2 π+π d 2 π d π¦ 2 =πΈππ Divide both sides by ππ β β 2 2π 1 π d 2 π d π₯ π d 2 π d π¦ 2 =πΈ
18
Continued To ensure β β 2 2π 1 π d 2 π d π₯ π d 2 π d π¦ 2 =πΈ, each term in the LHS should be some constant, viz. β β 2 2π 1 π d 2 π d π₯ 2 = πΈ 1 β β 2 2π 1 π d 2 π d π¦ 2 = πΈ 2 And πΈ 1 + πΈ 2 =πΈ
19
Continued The 2D S.E. of π π₯,π¦ has been decomposed into two 1D S.E. β β 2 2π d 2 π d π₯ 2 = πΈ 1 π β β 2 2π d 2 π d π¦ 2 = πΈ 2 π With solution where π 1 , π 2 =1,2,3,β¦ π π 1 , π 2 = 2 πΏ 1 πΏ 2 sin π 1 ππ₯ πΏ 1 sin π 2 ππ¦ πΏ 2 &, π€ππ‘βππ 2π· πππ₯ 0&, ππ’π‘π πππ πππ₯ πΈ π 1 , π 2 = π 1 2 π 2 β 2 2π πΏ π 2 2 π 2 β 2 2π πΏ 2 2
20
Mid-term summary SchrΓΆdinger Equation π» Ξ¨=πΈΞ¨
π» = πΎ + π Hamiltonian/Energy operator = Kinetic energy operator + potential energy operator For one-particle system: 3D π =β β 2 2π π» 2 +π π₯,π¦,π§ , where π» 2 = π 2 π π₯ π 2 π π¦ π 2 π π§ 2 is a Laplacian operator; 1D π =β β 2 2π d 2 d π₯ 2 +π π₯
21
Continued Probability density - Ξ¨ π₯ 2
The probability to find the particle between π₯ and π₯+dπ₯ is Ξ¨ π₯ 2 dπ₯ The probability to find the particle in whole space should be 1 Normalization of wave function Ξ¨/ dπ Ξ¨ 2 Hermitian operator dπ π β Ξ© π = dπ π β Ξ© π β e.g. π = β π β, π π₯ = β π d dπ₯
22
Continued Eigen value and eigen function β
π π π β π π =0 if πΈ π β πΈ π
π» π π = πΈ π π π β
π π π β π π =0 if πΈ π β πΈ π Uncertainty principle π₯ , π π₯ =πβ, βπ₯β
β π π₯ β₯β/2 βπΈβ
βπ‘β₯β/2 β β 2 2π d 2 π d π₯ 2 +ππ=πΈπ, πΈ>π π=π π Β±πππ₯ , π= 2π πΈβπ /β, π is normalization factor
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.