Download presentation
Presentation is loading. Please wait.
Published byΧλόη Κυπραίος Modified over 6 years ago
1
Impact of electro-weak processes in Type II Supernovae collapse
IPN Orsay CEA, DAM, DIF Observatoire de Paris, Meudon Università degli Studi di Milano Dipartimento di Fisica Université Libre de Bruxelles IAA energie atomique . energies alternatives Impact of electro-weak processes in Type II Supernovae collapse Patrick BLOTTIAU & Anthea F. FANTINA (CEA/DAM/DIF) (IAA – ULB Brussels) Dr. E. Khan, Dr. J. Margueron (IPN Orsay) Dr. Ph. Mellor (CEA, DAM, DIF) Dr. J. Novak, Dr. Micaela Oertel (Luth, Meudon) Prof. P. Pizzochero & Dr. P. Donati (Univ. Milano & INFN) MODE, Bordeaux, November 15-17, 2010
2
Nucleon effective mass
Outline MICROPHYSICS MACROPHYSICS Weak-processes Neutrino transport Symmetry energy(T) SN Simulations Nucleon effective mass Hydrodynamics Equation of State One-zone General Relativity Newtonian P. Blottiau & A.F. Fantina MODE 2010
3
Part I: intro & 1D Newtonian code (with n transport)
P. Blottiau & A.F. Fantina MODE 2010
4
Motivations: nuclear physics in SN
Condition in the core during collapse : 1) Very wide range of rho, T, Ye 2) We expect effects of T important 3) Asymmetry -> importance of the symmetry energy Esym (T) 15 solar mass progenitor P. Blottiau & A.F. Fantina MODE 2010
5
T-dependence of Esym Theoretical studies on influence
of T-dependence of nuclear symmetry energy on collapse trajectory: Donati P. et al, Phys. Rev. Lett. 72, 2835 (1994) Esym(T) obtained in analogy with Fermi gas model via m*(T): PVC dynamical effects beyond mean field (E-dependence of MF) Dean D.J. et al, Phys. Rev. C66, (2002) P. Blottiau & A.F. Fantina MODE 2010
6
EoS in SN simulations (see M. Oertel’s talk)
Lattimer and Swesty, Nucl. Phys. A 535, 331 (1991) - based on a liquid drop model - Shen et al., Nucl. Phys. A 637, 435 (1998) - based on RMF - and : ? (or Esym(T) as in Donati et al.?) but : not easy to implement Esym(T) in these EoS Bethe H.A. et al., Nucl. Phys. A 324, 487 (1979) (BBAL) based on a liquid drop model analytical EoS m*(T) has been implemented according to calculations by Donati et al. Outlooks: include this “thermal” effect in modern EoS P. Blottiau & A.F. Fantina MODE 2010
7
Effect of Esym(T) on CCSN
on free protons on nuclei larger values of Ylept at trapping less deleptonization less energy dissipated m*(T) Esym Yl,tr Shock wave energy In one-zone model m*(T) leads to systematic reduction of deleptonization in the core: dT Ylept ≈ ⇒ dT Ediss ≈ 0.4 foe ( A.F.Fantina, P. Donati and P. M. Pizzochero, Phys. Lett. B676, 140 (2009) ) P. Blottiau & A.F. Fantina MODE 2010
8
Results of collapse simulation at bounce: impact of Esym(T), BBAL EoS (1D Newtonian)
Systematic effect! ( A.F.Fantina, P. Blottiau, J. Margueron, Ph. Mellor, and P. Pizzochero, in preparation) P. Blottiau & A.F. Fantina MODE 2010
9
Conclusions & Outlook (I)
Influence of T-dependence of Esym on the evolution of collapse → systematic reduction of neutronization of the core (increasing of final lepton fraction) & less energy dissipated by shock wave - one zone model - → position of shock wave formation: bigger homologous core - 1D Newtonian code - even if no dramatic effect on dynamics of the collapse is expected (see fluid instabilities, SASI, magnetic field, …) effects are not negligible! P. Blottiau & A.F. Fantina MODE 2010
10
Part II: 1D GR (+ Newtonian vers.) code (no n transport)
P. Blottiau & A.F. Fantina MODE 2010
11
Results of collapse simulation at bounce: “std” trapping (1D GR), LS EoS K=180MeV
Bruenn 1985 rates P. Blottiau & A.F. Fantina MODE 2010
12
GR vs Newtonian simulation at bounce
P. Blottiau & A.F. Fantina MODE 2010
13
Conclusions (II) GR code : improvements
→ introduction of a trapping scheme → implementation of the Newtonian version → results in global agreement with the literature Influence of neutrinos in GR framework : → multi-group + trapping scheme allows for a first spectral information but : - trapping on density (same treatment for different neutrino energy) - processes other than capture (e.g. scattering) missing! P. Blottiau & A.F. Fantina MODE 2010
14
General Conclusions & Outlooks
Microphysics Macrophysics nuclear physics dynamics of collapse Nuclear inputs (microscopic calculation): EoS: extension of LS; different tables (J. Margueron, M. Oertel, S. Goriely, N. Chamel) deleptonization processes electron capture rates (E. Khan) symmetry energy nucleon effective mass and their T-dependence (RPA) (P. Donati, J. Margueron, P. Pizzochero) neutrino physics (P. Blottiau, J. Margueron, Ph. Mellor) Hydrodynamics: One-zone (P. Donati, P. Pizzochero) 1D Newtonian (P. Blottiau, Ph. Mellor) 1D General Relativistic: n transport (J. Novak, J. Pons, P. Blottiau, Ph. Mellor) P. Blottiau & A.F. Fantina MODE 2010
15
Thank you
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.