Presentation is loading. Please wait.

Presentation is loading. Please wait.

Hideki Seto Department of Physics, Kyoto University, Japan

Similar presentations


Presentation on theme: "Hideki Seto Department of Physics, Kyoto University, Japan"— Presentation transcript:

1 Pressure- and temperature- dependences of shape fluctuations in a microemulsion system
Hideki Seto Department of Physics, Kyoto University, Japan Michihiro Nagao ISSP, The University of Tokyo Takayoshi Takeda FIAS, Hiroshima Univ. Youhei Kawabata Tokyo Metropolitan Univ. …and many other colleagues with collaborations of

2 Ternary microemulsion systems water + oil + surfactant

3 Helfrich’s approach mean curvature Gaussian curvature bending modulus
W. Helfrich, Z. Naturforsch. C28 (1973) 693 mean curvature Gaussian curvature Bending energy bending modulus Spontaneous curvature

4

5 Phase transitions spontaneous curvatures bending moduli
Phase transitions are observed with increasing temperature, pressure, ... spontaneous curvatures bending moduli change with changing conditions SANS/SAXS and NSE studies

6 AOT + D2O + n-decane water-in-oil droplet

7 T-f(droplet volume fraction) phase diagram
Cametti et al. Phys. Rev. Lett. 64 (1990) 1461. 0.1 0.2 0.3 0.4 0.5 0.6 f T [˚C] 20 30 40 50 2 phase 1 phase lamellae binodal line droplet

8 Origin of temperature dependence
s > w/o droplet T R s ~ lamellar structure R s >

9 Pressure dependence Saïdi et al. J. Phys. D : Appl. Phys. 28 (1995) 2108. 0.1 0.2 0.3 0.4 0.5 0.6 f P [ MPa ] 10 20 30 40 percolation line binodal line 2 phase 1 phase droplet Lamellae

10 SANS measurement upper part lower part
Nagao and Seto, Phys. Rev. E 59 (1999) 3169 upper part lower part

11 Determination of P(Q) and S(Q)
P(Q):form factor of droplet polydisperse droplet with Schultz size distribution Kotlarchyk and Chen, J. Chem. Phys. 79 (1983) 2461. (R0: mean radius of water core) S(Q):inter-droplet structure factor hard core and adhesive potential Liu, Chen, Huang, Phys. Rev. E 54 (1996) 1698 L(Q)=1/(xr2Q2+1) :surfactant concentration fluctuation

12 Result of fitting I(Q)=P(Q)S(Q)+L(Q) R=51.9(Å) f=0.28 W=-3kBT e=0.0013
Z=26.1 R0=40.5 (Å) xr=10.6(Å)

13 Pressure dependence of W

14 Pressure-induced transition

15 Dynamical behavior Pressure-dependence Temperature-dependence
SAME? or DIFFERENT? dilute droplet Y. Kawabata, Ph. D thesis to Hiroshima Univ. dense droplet M. Nagao et al., JCP 115 (2001)

16 Neutron Inelastic/Quasielastic Scattering
Low wavelength resolution Low energy resolution High resolution Less intensity

17 Neutron Spin Echo Larmor precession in a magnetic field
Wavelength resolution and engergy resolution are decoupled

18 Advantages of NSE BEST for SLOW DYNAMICS in SOFT-MATTER
Highest energy resolution ~ neV I(Q,t) is observed : better to investigate relaxation processes BEST for SLOW DYNAMICS in SOFT-MATTER

19 Dense droplet

20 Model of membrane fluctuation
Zilman and Granek, Phys. Rev. Lett. 77 (1996) 4788) The Stokes-Einstein diffusion coefficient is, The relaxation rate is, Thus they obtained the stretched exponential form of the relaxation function as, where

21 k Bending modulus G(Q)= 0.024(kBT)2/3 k 1/3 h -1 Q3 0.4 T 1.4 2.6
high-T ambient-T,P high-P 0.4 B T 1.4 2.6

22 Dilute droplet fs=0.37 (AOT volume fraction)
temperature / pressure AOT / D2O / d-decane (film contrast) fs=0.37 (AOT volume fraction) f =0.1 (droplet volume fraction)

23 Measured points AOT / D2O / d-decane (film contrast)
fs=0.37 (AOT volume fraction) f =0.1 (droplet volume fraction)

24 Result of SANS T=25 ˚C → 65˚C R0 ~ 32Å → 28Å p ~ 0.16 → 0.18
10 100 I(Q) [cm -1 ] 0.01 2 3 4 5 6 7 8 9 0.1 Q [Å T=298.15K P=22 MPa T=298.15K P=0.1MPa T=329.15K P=0.1MPa R0 ~ 32Å → 28Å T=25 ˚C → 65˚C P=0.1 MPa → 60 MPa R0 ~ 32 Å → 30Å p ~ 0.16 → 0.18 p ~ 0.16

25 NSE profiles T P T=43˚C/ P=0.1MPa Room temperature/pressure
RT/ P=20MPa P

26 Milner and Safran model
Huang et al. PRL 59 (1987) 2600. Farago et al. PRL 65 (1990) 3348. Expansion of the shape fluctuation into spherical harmonics damping frequency of the 2nd mode deformation up to n=2 mode gives where mean-square displacement of the 2nd mode deformation translational diffusion shape deformation n=0 mode n=2 mode

27 Effective diffusion constant
12 10 8 6 4 2 0.14 0.12 0.10 0.08 0.06 0.04 Q -1 ] T= 19˚C T= 25˚C T= 35˚C T= 49˚C T= 55˚C P= 60MPa P= 21MPa P= 40MPa Deff [10-7 cm2/s] temperature pressure

28 Expansion of the theory
Y. Kawabata, Ph. D thesis EXPERIMENTALY OBTAINED PARAMETERS KNOWN PARAMETERS From SANS experiments Seki and Komura Physica A 219 (1995) 253 

29 Pressure- and temperature-dependence of k and <|a2|2>
(A) : Temperature dependence of k k (B): Pressure dependence of

30 Introducing reduced pressure / temperature
TB , PB : binodal point T0 , P0 : ambient temperature/pressure binodal point ambient temperature/pressure

31 Schematic picture Temperature Pressure

32 Pressure- and temperature dependences of head area
64 62 60 58 56 54 52 -0.8 -0.4 0.0 0.4 T, P ^ ^ aH[Å2] temperature area per molecule a H= number of surfactants per droplet pressure number of surfactants per droplet number of surfactants = number of droplets Whole volume of droplets number of droplets = volume of a droplet

33 Summary Pressure- and temperature-dependences of the structure and the dynamics of AOT/D2O/decane were investigated. k increase decrease microscopic tail-tail interaction counter-ion dissociation pressure temperature structure dense droplet lamellar/bicontinuous dilute droplet phase droplet spontaneous curvature Rs bending modulus for Gaussian curvature k


Download ppt "Hideki Seto Department of Physics, Kyoto University, Japan"

Similar presentations


Ads by Google