Presentation is loading. Please wait.

Presentation is loading. Please wait.

P1 Chapter 1 :: Algebraic Expressions

Similar presentations


Presentation on theme: "P1 Chapter 1 :: Algebraic Expressions"β€” Presentation transcript:

1 P1 Chapter 1 :: Algebraic Expressions
Last modified: 23rd July 2018

2 www.drfrostmaths.com Everything is completely free. Why not register?
Register now to interactively practise questions on this topic, including past paper questions and extension questions (including MAT + UKMT). Teachers: you can create student accounts (or students can register themselves), to set work, monitor progress and even create worksheets. With questions by: Dashboard with points, trophies, notifications and student progress. Questions organised by topic, difficulty and past paper. Teaching videos with topic tests to check understanding.

3 Chapter Overview As a relatively gentle introduction to Pure, most of this chapter is a recap of core GCSE algebraic skills. 1:: Basic Index Laws 2:: Expand brackets Simplify 3 π‘₯ 2 βˆ’6 π‘₯ 5 2π‘₯ Expand and simplify π‘₯βˆ’3 2 π‘₯+1 4:: Fractional/Negative Powers 3:: Factorise quadratics/cubics Evaluate: βˆ’ 2 3 Factorise fully: π‘₯ 3 βˆ’16π‘₯ NEW! (since GCSE) You may have to combine factorisation techniques to factorise cubics. 5:: Surds Rationalise the denominator of NEW! (since GCSE) You’ve dealt with expressions of the form π‘Ž 𝑏 , but not with more complex denominators such as π‘Ž π‘βˆ’ 𝑐

4 1 :: Index Laws exponent or power or index (plural: indices) ! π‘Ž π‘š Γ— π‘Ž 𝑛 = π‘Ž π‘š+𝑛 π‘Ž π‘š Γ· π‘Ž 𝑛 = π‘Ž π‘šβˆ’π‘› π‘Ž π‘š 𝑛 = π‘Ž π‘šπ‘› π‘Žπ‘ 𝑛 = π‘Ž 𝑛 𝑏 𝑛 base 3 5 Confusingly β€œpower” can also mean β€˜power expression’, i.e. all of β€œ 3 5 ”. π‘Ž 𝑏 𝑐 is sometimes said as β€œa power to a power”, meaning β€œa power expression to a power”. Simplify π‘Ž Γ—2 π‘Ž 2 Simplify 4 π‘₯ 3 𝑦 3 ? ? = π‘Ž 6 Γ—2 π‘Ž 2 =2 π‘Ž 8 =64 π‘₯ 9 𝑦 3 Simplify 2 π‘₯ π‘₯ βˆ’π‘₯ 4βˆ’ π‘₯ 2 Simplify π‘₯ 3 βˆ’2π‘₯ 3 π‘₯ 2 ? =6 π‘₯ π‘₯ 3 βˆ’4π‘₯+ π‘₯ 3 =11 π‘₯ 3 +6 π‘₯ 2 βˆ’4π‘₯ ? = π‘₯ 3 3π‘₯ 2 βˆ’ 2π‘₯ 3 π‘₯ 2 = 1 3 π‘₯βˆ’ 2 3π‘₯ Fro Tip: While π‘Ž+𝑏 𝑐 can be split into π‘Ž 𝑐 + 𝑏 𝑐 , a common student error is to think that π‘Ž 𝑏+𝑐 = π‘Ž 𝑏 + π‘Ž 𝑐 Fro Tip: A common student error is to get the sign wrong of + π‘₯ 3

5 Test Your Understanding
1 Simplify 2 π‘Ž 5 π‘Ž Γ—3π‘Ž 2 Simplify 2π‘₯+ π‘₯ 5 4 π‘₯ 3 ? ? = 2 π‘Ž Γ—3π‘Ž =4 π‘Ž 6 Γ—3π‘Ž =12 π‘Ž 7 = 1 2 π‘₯ βˆ’ π‘₯ 2 or π‘₯ π‘₯ 2 4 3 Expand and simplify 2π‘₯ 3βˆ’ π‘₯ 2 βˆ’4 π‘₯ 3 3βˆ’π‘₯ 4 Simplify 2 π‘₯ Γ— 3 π‘₯ ? = 6 π‘₯ Fro Note: This is using π‘Žπ‘ 𝑛 = π‘Ž 𝑛 𝑏 𝑛 law backwards. ? =6π‘₯βˆ’2 π‘₯ 3 βˆ’12 π‘₯ 3 +4 π‘₯ 4 =4 π‘₯ 4 βˆ’14 π‘₯ 3 +6π‘₯

6 Exercise 1A ? ? Pearson Pure Mathematics Year 1/AS Page 3
Extension (Full Database: ) 1 2 ? 𝑡= 𝟐 π’Œ Γ— 𝟐 πŸπ’Ž Γ— 𝟐 πŸ‘π’ = 𝟐 π’Œ+πŸπ’Ž+πŸ‘π’ This is square if: π’Œ+πŸπ’Ž+πŸ‘π’ is even β‡’ π’Œ+πŸ‘π’ is even β‡’π’Œ+𝒏 is even ? Solution: 𝟐 πŸ‘ 𝟐 πŸ‘

7 2 :: Expanding Brackets π‘₯βˆ’π‘¦ π‘₯+π‘¦βˆ’1 = π‘₯ 2 +π‘₯𝑦 βˆ’π‘₯ βˆ’π‘₯𝑦 βˆ’ 𝑦 2 +𝑦
If you have ever been taught β€˜FOIL’ to multiply brackets please purge it from your mind now – instead: Multiply each term in the first bracket by each term in the second. π‘₯βˆ’π‘¦ π‘₯+π‘¦βˆ’1 Fro Tip: My order is β€œfirst term in first brackets times each in second, then second term in first bracket times each in second, etc.” = π‘₯ 2 +π‘₯𝑦 βˆ’π‘₯ βˆ’π‘₯𝑦 βˆ’ 𝑦 2 +𝑦 = π‘₯ 2 βˆ’ 𝑦 2 βˆ’π‘₯+𝑦 Fro Tip: For more than 2 brackets, multiply two out each time to reduce the number of brackets by one. π‘₯+1 π‘₯+2 π‘₯+3 = π‘₯+1 π‘₯ 2 +5π‘₯+6 = π‘₯ 3 +5 π‘₯ 2 +6π‘₯+ π‘₯ 2 +5π‘₯+6 = π‘₯ 3 +6 π‘₯ 2 +11π‘₯+6 ?

8 Test Your Understanding
1 Expand and simplify π‘₯+5 π‘₯βˆ’2 π‘₯+1 2 Expand and simplify: 2 π‘₯βˆ’3 π‘₯βˆ’4 ? = π‘₯+5 π‘₯ 2 βˆ’π‘₯βˆ’2 = π‘₯ 3 βˆ’ π‘₯ 2 βˆ’2π‘₯+5 π‘₯ 2 βˆ’5π‘₯βˆ’10 = π‘₯ 3 +4 π‘₯ 2 βˆ’7π‘₯βˆ’10 ? =2 π‘₯ 2 βˆ’7π‘₯+12 =2 π‘₯ 2 βˆ’14π‘₯+24 3 Expand and simplify: 2π‘₯βˆ’1 3 = 2π‘₯βˆ’1 2π‘₯βˆ’1 2π‘₯βˆ’1 = 2π‘₯βˆ’1 4 π‘₯ 2 βˆ’4π‘₯+1 =8 π‘₯ 3 βˆ’8 π‘₯ 2 +2π‘₯βˆ’4 π‘₯ 2 +4π‘₯βˆ’1 =8 π‘₯ 3 βˆ’12 π‘₯ 2 +6π‘₯βˆ’1 ?

9 Exercise 1B ? ? Pearson Pure Mathematics Year 1/AS Page 5
Extension (Full Database: ) 1 2 ? ? Solution: 𝒏 is odd and 𝒙>πŸ“ Solution: (ii) only

10 3 :: Factorising ? ? π‘₯(π‘₯+1)(π‘₯+2) π‘₯ π‘₯+1 + π‘₯βˆ’1 π‘₯+1
Informally, factorising is the opposite of expanding brackets. More formally, a factorised expression is one which is expressed as a product of expressions. Factorised as it is the product of 3 linear factors, π‘₯, π‘₯+1 and π‘₯+2. π‘₯(π‘₯+1)(π‘₯+2) Fro Note: A linear expression is of the form π‘Žπ‘₯+𝑏. It is called linear because plotting 𝑦=π‘Žπ‘₯+𝑏 would form a straight line. Not factorised because the outer-most operation is a sum, not a product. π‘₯ π‘₯+1 + π‘₯βˆ’1 π‘₯+1 Basic Examples: π‘₯ 3 + π‘₯ 2 = 𝒙 𝟐 𝒙+𝟏 4π‘₯βˆ’8π‘₯𝑦=πŸ’π’™ πŸβˆ’πŸπ’š ? ?

11 2π‘₯ 2 +5π‘₯βˆ’12 =2 π‘₯ 2 +8π‘₯βˆ’3π‘₯βˆ’12 =2π‘₯ π‘₯+4 βˆ’3 π‘₯+4 =(π‘₯+4)(2π‘₯βˆ’3)
Factorising Quadratics Recap: We find two numbers which multiply to give the coefficient of π‘₯ and multiply to give the constant term. βŠ• βŠ— π‘₯ 2 βˆ’5π‘₯βˆ’14= π’™βˆ’πŸ• 𝒙+𝟐 ? Fro Note: The coefficient of a term is the constant on front of it, e.g. the coefficient of 4 π‘₯ 2 is 4. But what if the coefficient of π‘₯ 2 is not 1? 2π‘₯ 2 +5π‘₯βˆ’12= πŸπ’™βˆ’πŸ‘ 𝒙+πŸ’ ? The easiest way is to use your common sense to guess the brackets. What multiplies to give the 2 π‘₯ 2 ? What multiplies to give the constant term of βˆ’12? Or you can β€˜split the middle term’ (don’t be embarrassed if you’ve forgotten how to!) ? βŠ•5 βŠ—βˆ’24 2π‘₯ 2 +5π‘₯βˆ’12 =2 π‘₯ 2 +8π‘₯βˆ’3π‘₯βˆ’12 =2π‘₯ π‘₯+4 βˆ’3 π‘₯+4 =(π‘₯+4)(2π‘₯βˆ’3) ? STEP 1: Find two numbers which add to give the middle number and multiply to give the first times last. ? STEP 2: Split the middle term. ? STEP 3: Factorise first half and second half ensuring bracket is duplicated.. ? STEP 4: Factorise out bracket.

12 4 π‘₯ 2 βˆ’9= πŸπ’™+πŸ‘ πŸπ’™βˆ’πŸ‘ π‘₯ 3 βˆ’π‘₯ =𝒙 𝒙 𝟐 βˆ’πŸ =𝒙(𝒙+𝟏)(π’™βˆ’πŸ)
Other Factorisations Difference of two squares: 4 π‘₯ 2 βˆ’9= πŸπ’™+πŸ‘ πŸπ’™βˆ’πŸ‘ ? Using multiple factorisations: π‘₯ 3 βˆ’π‘₯ =𝒙 𝒙 𝟐 βˆ’πŸ =𝒙(𝒙+𝟏)(π’™βˆ’πŸ) Fro Tip: Always look for a common factor first before using other factorisation techniques. ? π‘₯ 3 +3 π‘₯ 2 +2π‘₯ =𝒙 𝒙 𝟐 +πŸ‘π’™+𝟐 =𝒙 𝒙+𝟐 𝒙+𝟏 ?

13 Test Your Understanding
1 Factorise completely: 6 π‘₯ 2 +π‘₯βˆ’2 2 Factorise completely: π‘₯ 3 βˆ’7 π‘₯ 2 +12π‘₯ 6 π‘₯ 2 +π‘₯βˆ’2 βŠ•1 βŠ—βˆ’12 =6 π‘₯ 2 +4π‘₯βˆ’3π‘₯βˆ’2 =2π‘₯ 3π‘₯+2 βˆ’1 3π‘₯+2 = 3π‘₯+2 2π‘₯βˆ’1 =π‘₯ π‘₯ 2 βˆ’7π‘₯+12 =π‘₯ π‘₯βˆ’3 π‘₯βˆ’4 ? ? N Factorise completely: π‘₯ 4 βˆ’1 N Factorise completely: π‘₯ 3 βˆ’1 ? ? =(π‘₯βˆ’1)( π‘₯ 2 +π‘₯+1) = π‘₯ π‘₯ 2 βˆ’1 = π‘₯ π‘₯+1 π‘₯βˆ’1 Fro Note: You would not be expected to factorise this at A Level (but you would in STEP!). In general, the difference of two cubes: π‘₯ 3 βˆ’ 𝑦 3 = π‘₯βˆ’π‘¦ π‘₯ 2 +π‘₯𝑦+ 𝑦 2

14 Exercise 1C Pearson Pure Mathematics Year 1/AS Page 8

15 4 :: Negative and Fractional Indices
π‘Ž 0 =1 π‘Ž 1 π‘š = π‘š π‘Ž π‘Ž 𝑛 π‘š = π‘š π‘Ž 𝑛 π‘Ž βˆ’π‘š = 1 π‘Ž π‘š Fro Note: 9 only means the positive square root of 9, i.e. 3 not -3. Otherwise, what would be the point of the Β± in the quadratic formula before the 𝑏 2 βˆ’4π‘Žπ‘ ? Prove that π‘₯ = π‘₯ Evaluate 27 βˆ’ 1 3 Evaluate ? ? ? π‘₯ Γ— π‘₯ = π‘₯ 1 But π‘₯ Γ— π‘₯ =π‘₯ ∴ π‘₯ = π‘₯ = = 1 3 = 2 2 =4 If 𝑏= 1 9 π‘Ž 2 , determine 3 𝑏 βˆ’2 in the form π‘˜ 𝑏 𝑛 where π‘˜,𝑛 are constants. Simplify π‘₯ 6 𝑦 1 2 Evaluate βˆ’ 2 3 = 1 3 π‘₯ 3 𝑦 1 2 ? = = = 4 9 ? ? 3 𝑏 βˆ’2 = π‘Ž 2 βˆ’2 =3 81 π‘Ž βˆ’4 =243 π‘Ž βˆ’4

16 Exercise 1D ? Pearson Pure Mathematics Year 1/AS Page 11
Extension (Full Database: ) ? = 𝟐 𝒓+𝒔 Γ— πŸ‘ 𝒓+𝒔 Γ— 𝟐 πŸπ’“βˆ’πŸπ’” Γ— πŸ‘ π’“βˆ’π’” 𝟐 πŸ‘π’“ Γ— πŸ‘ πŸπ’“+πŸ’π’” = 𝟐 βˆ’π’” Γ— πŸ‘ βˆ’πŸ’π’” This is an integer only if π’”β‰€πŸŽ.

17 5 :: Surds Recap: Fro Note: A rational number is any which can be expressed as π‘Ž 𝑏 where π‘Ž,𝑏 are integers and 4 1 =4 are rational numbers, but πœ‹ and 2 are not. A surd is a root of a number that does not simplify to a rational number. Laws: π‘Ž Γ— 𝑏 = π‘Žπ‘ π‘Ž 𝑏 = π‘Ž 𝑏 3 Γ— =𝟐 πŸ‘ Γ— =πŸ‘πŸŽ 8 = =𝟐 𝟐 =𝟐 πŸ‘ +πŸ‘ πŸ‘ =πŸ“ πŸ‘ βˆ’3 = πŸπŸ” βˆ’πŸ‘ πŸ– + 𝟐 βˆ’πŸ‘ =πŸ’βˆ’πŸ” 𝟐 + 𝟐 βˆ’πŸ‘ =πŸβˆ’πŸ“ 𝟐 ? ? ? ? ? ? ?

18 Exercise 1E ? ? Pearson Pure Mathematics Year 1/AS Page 11
Extension (questions used with permission by the UKMT) 1 2 Note that: πŸπŸŽβˆ’πŸ‘ 𝟏𝟏 = 𝟏𝟎𝟎 βˆ’ πŸ—πŸ— The other options can similarly be written as 𝒏+𝟏 βˆ’ 𝒏 . The greater the 𝒏, the smaller the number, so the answer is πŸπŸŽβˆ’πŸ‘ 𝟏𝟏 . If 𝒂+𝟏𝟐 𝟐 =𝒙+π’š 𝟐 , then squaring: 𝒂+𝟏𝟐 𝟐 = 𝒙 𝟐 +𝟐 π’š 𝟐 +πŸπ’™π’š 𝟐 Thus πŸπ’™π’š=𝟏𝟐 β†’ π’™π’š=πŸ” The only possibilities are 𝒙,π’š = 𝟏,πŸ” , 𝟐,πŸ‘ , πŸ‘,𝟐 , πŸ”,𝟏 corresponding to the 5th, 2nd, 1st and 3rd options. Thus πŸ“πŸ’+𝟏𝟐 𝟐 is the odd one out. ? ?

19 5 Γ— 5 =5 1 2 Γ— 2 2 = 2 2 6 :: Rationalising The Denominator ? ? ? ?
Here’s a surd. What could we multiply it by such that it’s no longer an irrational number? 5 Γ— 5 =5 ? ? Γ— = ? ? In this fraction, the denominator is irrational. β€˜Rationalising the denominator’ means making the denominator a rational number. What could we multiply this fraction by to both rationalise the denominator, but leave the value of the fraction unchanged? Bro Side Note: There’s two reasons why we might want to do this: For aesthetic reasons, it makes more sense to say β€œhalf of root 2” rather than β€œone root two-th of 1”. It’s nice to divide by something whole! It makes it easier for us to add expressions involving surds.

20 Examples Test Your Understanding: = πŸ‘ 𝟐 𝟐 = πŸ” πŸ‘ πŸ‘ =𝟐 πŸ‘ = πŸ• πŸ• πŸ• = πŸ• =πŸ‘ πŸ“ + πŸ“ =πŸ’ πŸ“ ? =πŸ’ πŸ‘ = πŸ” πŸ‘ = πŸπŸ” πŸ– =𝟐 ? ? ? ? ? ?

21 More Complex Denominators
You’ve seen β€˜rationalising a denominator’, the idea being that we don’t like to divide things by an irrational number. But what do we multiply the top and bottom by if we have a more complicated denominator? Γ— 𝟐 βˆ’πŸ 𝟐 βˆ’πŸ = 𝟐 βˆ’πŸ 𝟏 = 𝟐 βˆ’πŸ ? ? We basically use the same expression but with the sign reversed (this is known as the conjugate). That way, we obtain the difference of two squares. Since π‘Ž+𝑏 π‘Žβˆ’π‘ = π‘Ž 2 βˆ’ 𝑏 2 , any surds will be squared and thus we’ll end up with no surds in the denominator.

22 More Examples 3 6 βˆ’2 Γ— = ? ? You can explicitly expand out 6 βˆ’ in the denominator, but remember that π‘Žβˆ’π‘ π‘Ž+𝑏 = π‘Ž 2 βˆ’ 𝑏 2 so we can mentally obtain 6βˆ’4=2 Just remember: β€˜difference of two squares’! Γ— 3 βˆ’1 3 βˆ’1 = 4 3 βˆ’4 2 =2 3 βˆ’2 ? ? ? βˆ’7 Γ— πŸ“ 𝟐 +πŸ• πŸ“ 𝟐 +πŸ• = πŸ‘πŸŽ+𝟐𝟏 𝟐 +𝟐𝟎 𝟐 +πŸπŸ– 𝟏 =πŸ“πŸ–+πŸ’πŸ 𝟐 ? ?

23 Test Your Understanding
Rationalise the denominator and simplify 4 5 βˆ’2 ? πŸ–+πŸ’ πŸ“ Rationalise the denominator and simplify 2 3 βˆ’ AQA IGCSE FM June 2013 Paper 1 Solve 𝑦 3 βˆ’1 =8 Give your answer in the form π‘Ž+𝑏 3 where π‘Ž and 𝑏 are integers. ? 𝟐 πŸ‘ βˆ’πŸ πŸ‘ πŸ‘ +𝟏 Γ— πŸ‘ πŸ‘ βˆ’πŸ πŸ‘ πŸ‘ βˆ’πŸ = πŸπŸ–βˆ’πŸ πŸ‘ βˆ’πŸ‘ πŸ‘ +𝟏 πŸπŸ•βˆ’πŸ = πŸπŸ—βˆ’πŸ“ πŸ‘ πŸπŸ” ? π’š= πŸ– πŸ‘ βˆ’πŸ Γ— πŸ‘ +𝟏 πŸ‘ +𝟏 = πŸ– πŸ‘ +πŸ– 𝟐 =πŸ’+πŸ’ πŸ‘

24 Exercise 1F (Page 15) or alternatively: (not in textbook) Rationalise the denominator and simplify the following: = πŸ“ βˆ’πŸ βˆ’1 = πŸ‘+ πŸ‘ 𝟐 βˆ’2 =πŸ•+πŸ‘ πŸ“ 2 3 βˆ’ =πŸβˆ’ πŸ‘ 5 5 βˆ’ βˆ’3 =πŸ’+ πŸ“ 1 2 Expand and simplify: βˆ’ =πŸ’ Rationalise the denominator, giving your answer in the form π‘Ž+𝑏 3 . βˆ’5 =πŸ‘πŸ+πŸπŸ– πŸ‘ Solve π‘₯ 4βˆ’ 6 =10 giving your answer in the form π‘Ž+𝑏 6 . π‘₯= 10 4βˆ’ 6 =πŸ’+ πŸ” Solve 𝑦 βˆ’ 2 =3 𝑦= =𝟐 𝟐 βˆ’πŸ Simplify: π‘Ž+1 βˆ’ π‘Ž π‘Ž+1 + π‘Ž =πŸπ’‚+πŸβˆ’πŸ 𝒂 𝒂+𝟏 ? ? a 3 ? b ? ? c 4 ? ? d ? 5 e ? 6 ?

25 A final super hard puzzle
Solve = π‘₯ 3 N πŸ’ πŸ‘ 𝟐 πŸ“ πŸ‘ πŸ‘ = πŸ‘ 𝟐 𝟏 πŸ’ πŸ‘ πŸ‘ 𝟏 πŸ“ = πŸ‘ 𝟏 𝟐 πŸ‘ πŸ‘ πŸ“ = πŸ‘ βˆ’ 𝟏 𝟏𝟎 But 𝒙 πŸ‘ = πŸ‘ 𝟏 𝒙 ∴ 𝟏 𝒙 =βˆ’ 𝟏 𝟏𝟎 β†’ 𝒙=βˆ’πŸπŸŽ ?


Download ppt "P1 Chapter 1 :: Algebraic Expressions"

Similar presentations


Ads by Google