Download presentation
Presentation is loading. Please wait.
1
Slides prepared on 09 September, 2018
Convex-optimization decoding for Massive MIMO Christos Thrampoulidis joint work with Ehsan Abbasi, Weiyu Xu and Babak Hassibi (Main) Reference: “Symbol Error Rate Performance of Box-Relaxation Decoders in Massive MIMO”, C Thrampoulidis; Weiyu Xu, Babak Hassibi, IEEE Transactions of Signal Processing, 2018 Slides prepared on 09 September, 2018
2
5G wireless technologies: Massive MIMO
34 billion including IoT [Ericsson Mobility Report November 2017] guaranteed QoS to as many users as possible energy and cost efficient while maintaining high QoS limits of achievable data rates (Some) challenges: promising solution for 5G hundreds antennas at each base station Massive MIMO
3
Massive MIMO decoding y=Ax0+z Decoder x0,1 y1 x0,2 y2 y x0,3 ym x0,n
. y1 Decoder y2 ym y Channel model: A has entries iid [flat-fading Rayleigh model] z has entries iid Gaussian Noise model: Signal constellation: for simplicity, [BPSK signal]
4
Curse of dimensionality
y=Ax0+z x0,1 x0,2 x0,3 x0,n . y1 ML decoder y2 y . ym (BPSK signal)
5
Zero-forcing decoder y=Ax0+z x0,1 y1 x0,2 y2 y x0,3 ym x0,n
. y1 y2 y . ym Computationally efficient Performance guarantees (BPSK signal)
6
Notice: m>n y2 ym Computationally efficient Performance guarantees
. ym Computationally efficient Performance guarantees (BPSK signal) Notice: m>n
7
Zero-forcing decoder y=Ax0+z x0,1 y1 x0,2 y2 y x0,3 ym x0,n
. y1 y2 y . ym Computationally efficient Performance guarantees (BPSK signal) Does not exploit structure
8
Box-relaxation decoder
y=Ax0+z x0,1 x0,2 x0,3 x0,n . y1 Box relaxation y2 y . ym Accounts for structural information No closed form but still efficient Flexibility Higher-order constellations other modulation schemes, e.g. GSSK (BPSK signal)
9
Performance guarantees?
y=Ax0+z x0,1 x0,2 x0,3 x0,n . y1 Box relaxation y2 y . ym What is the BER? How many antennas needed? (BPSK signal) vs ZF? vs optimal?
10
Performance of box-relaxation
Theory [Τhrampoulidis, Xu, Hassibi. IEEE Transactions on Signal Processing, 2018]
11
Precise! (n=512, #iter=100)
12
Optimality gap 3dB
13
Implications on system design:
How many antennas?
14
BER of box-relaxation y=Ax0+z . y Box relaxation Theorem.
15
Much more… Higher-order constellations
16
Much more… Higher-order constellations Optimal relaxation threshold
[Attitalah,T.,Kammoun,Naffouri,Hassibi,Alouini, arXiv 2017]
17
Much more… Higher-order constellations Optimal relaxation threshold
Empirical distribution [T., Xu, Hassibi, arXiv 2017]
18
Much more… Higher-order constellations Optimal relaxation threshold
Empirical distribution LASSO with box constraint (e.g., GSSK) Optimal tuning Imperfect CSI [Alrashdi,Attitalah,Naffouri, Alouini. GlobalSIP 2017] [Attitalah,T.,Kammoun,Naffouri,Alouini. ICASSP, ISIT 2017]
19
Our Approach Challenge: Approach: NO closed-form expression!
Gaussian Comparisons Challenge: NO closed-form expression! Approach: Analyze a simpler, but “equivalent”, optimization problem! (* paper for details)
20
Energy Efficiency Use of low-end hardware (low-resolution Analog to Digital Converters (ADC) at the receiver side for reduced power consumption and reduced cost. Q: Computationally efficient decoder with provable guarantees? A: Use the Box-relaxation Decoder!
21
Nonlinear = linear y Box relaxation Theorem. Ax0+z 1-bit measurements:
q-bit measurements: [Τhrampoulidis, Xu. IEEE SSP, 2018]
22
Performance guarantees
[Τhrampoulidis, Xu. IEEE SSP, 2018]
23
Implications to System Design
ADC Box-dec A Box-dec A Lloyd-Max (LM) algorithm is optimal
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.