Download presentation
Presentation is loading. Please wait.
Published byLouis Benoît Modified over 6 years ago
1
Station 1 Station 3 1) Which situations are examples of opposite quantities adding to zero? (select ALL that apply – there are more than 1) A. A hot air balloon begins at 25 feet above the ground, ascends 75 feet, and then descends 100 feet. B. Brandy opens a bank account, deposits $225, and then writes a check for $225. C. A car drives 20 feet forward, turns left, and drives another 20 feet. D. Alan begins on the ground floor of a building, takes the elevator down 2 levels to the garage, and then climbs the stairs up 2 levels. E. The temperature at night was 10 degrees below zero. By morning it had risen 7 degrees. By noon, it had risen 3 more degrees. 1.) Review the following expressions. Determine which symbol (<, >, or =) could be placed in the blank to make a true mathematical statement. a.) _____ | | b.) |8 – 7 | _____ -|8 – 7| c.) _____ – (-1) d.) |-4 – (-1)| _____ |4 – 1| 2) Which equations are true? I (-1.7) = – 1.7 II = 8.2 – (-4.1) III = 4.9 – a.) II only b.) III only c.) I and II d.) I and III Station 2 1.) Identify the additive inverse for each point located on the number line shown below. A _____ B _____ C _____ D _____ Station 4 Alex claims that |x – y| represents the distance between any two integers x and y. Agree or disagree with Alex’s statement and defend your answer. Use numeric examples (at least 2) to help support your defense. 2.) Is absolute value always, sometimes, or never negative? Explain your answer.
2
Station 5 Station 6 Identify which of the following numbers makes each statement true. There might be more than one number for each statement. A. Statement #1: ______ = a positive number B. Statement #2: _______ – 5 = a negative number C. Statement #3: _______ + 4 = zero D. Statement #4: _______ = a negative number Wesley plays golf every weekend during the spring. He plays well enough to get close to par every round. His difference from par over the past 8 weeks has been +2, +3, -2, +1, +3, -2, +1, -1. What will he have to score on the ninth week in order to be at par (0) for the nine week period? Station 7 Station 8 Are the expressions equivalent? Write yes or no for each. 18 – 2 and 18 + (-2) -3 – 25 and 25 – (-3) 11 – 7 and -7 – 10 22 – 9 and 5 – 18 and 5 + (-30) -29 – 4 and (-4) 4 – 19 and -29 + (-3) and -3 – 29 Richard is the running back for his school’s 7th grade football team. His first three plays include a gain of 20 yards, a gain of 2 yards and a loss of 5 yards. His next four plays consisted of a gain of 3 yards, a loss of 4 yards, a gain of 7 yards and a loss of 3 yards. If Richard wants to end the game with an overall net gain of 30 yards, how many yards does he still need before the end of the game?
3
Station 10 Station 11 1) Fill in the blank for each. Use the choices give. 5 – (-2) + 3 = ___+ ___ + 5 A Choices: B C D 2) (-2) – 4 = ___+ ___ + 11 A Choices: B C D 3) 8 – (-2 + 4) = (___+ ___) + 8 A Choices: B C D Plot the numbers n – p, n + p, and p – n on the number line. Select an expression (from the choices) to make this statement true. The number with the least value is ___________________ (n – p, n + p, or p – n ) and the number with the greatest value is ______________________ (n – p, n + p, or p – n). 2) Which expressions are equivalent to -30 – (-12)? Select ALL that apply. A – 12 B C (-12) D. 12 – 30 E. 30 – (-12) F. 30 – 12 G – (-30) H (+12) I (-30)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.