Presentation is loading. Please wait.

Presentation is loading. Please wait.

Take out genetic reproduction homework sheet

Similar presentations


Presentation on theme: "Take out genetic reproduction homework sheet"— Presentation transcript:

1 Take out genetic reproduction homework sheet
December 2, 2011 Warm Up Take out journal Take out genetic reproduction homework sheet

2 1. b, e 2. a 3. c, d 4.the only way you see a recessive trait is if both alleles are recessive 5. b 6. g 7. e 8. f 9. c 10. d 11. a 12 possible -0= 100 1=92 2= 83 3= 75 4= 67 5=58 6=50 7=42 8=33 9=25 10=17 11=8

3 Turn to next empty page in journal Make a “t” chart in journal
things that are alike things that are different

4 Besides by looking at a family how do we know that it is our genetics that determine how we look?
Gregor Mendel! Gregor Who???

5 take notes as watch video to use on assignment

6 Teacher will handout worksheet
Read as a class aloud Discuss readings in relation to movie Power point Notes to follow

7 Gregor Mendel allele recessive genotype gene homozygous hetrozygous traits phenotype chromosome punnett square dominant

8 Genetics Using Punnett Squares

9 Early Genetics The study of genetics
began with observations made by Gregor Mendel. After noticing that the flowers his pea plants were either violet or white, Mendel began to study the segregation of heritable traits. Between 1856 and 1863 he cultivated and tested at least 28,000 pea plants. Remember that Mendel worked almost 150 years ago when nobody knew about genes or even the structures (chromosomes) that carry genes.

10 Here are some traits observed by Mendel:

11 Lets consider a single gene…
A gene carries information that determines your traits. Traits are characteristics you inherit from your parents. Genes are located in chromosomes. Chromosomes come in pairs and there are thousands, of genes in one chromosome.

12 Continued… In humans, a cell’s nucleus contains 46 individual
chromosomes or 23 pairs of chromosomes. Half of the chromosomes come from one parent and half come from the other parent. This is a human karyotype representing the 23 pairs of chromosomes in a male Here is the detailed structure of a chromosome

13 Definitions Allele- discrete version of the same gene
Genotype- the genes of an organism for one specific trait Phenotype- the physical appearance of a trait in an organism

14 Definitions Dominant trait refers to a genetic feature that “hides” the recessive trait in the phenotype of an individual. The term "recessive” describes a trait that is covered over (or dominated) by another form of that trait and seems to disappear. Homozygous= two alleles that are the same for a trait (Pure) Heterozygous= two different alleles for a trait (Hybrid)

15 Practice We use two letters to represent the genotype. A capital letter represents the dominant form of a gene (allele) and a lowercase letter is the abbreviation for the recessive form of the gene (allele). Example below: P=dominant purple and p= recessive white The phenotype for this flower is violet while its genotype (if homozygous) is PP. The phenotype for this flower is white while its genotype is pp (to be white the flower must have two of the recessive copies of the allele).

16 Punnett Squares The Punnett square is the standard way of working out what the possible offspring of two parents will be. It is a helpful tool to show allelic combinations and predict offspring ratios.

17 Before we go further lets review how to set up a Punnett Square…
We begin by constructing a grid of two perpendicular lines.

18 B B b Next, put the genotype of one parent across
the top and the other along the left side. For this example lets consider a genotype of BB crossed with bb. B B Notice only one letter goes above each box It does not matter which parent’s genotype goes on either side. b

19 Next, fill in the boxes by copying the column and row head-letters down and across into
the empty spaces. B B b B b B b b B b B b

20 Punnett Squares Now that we have learned the basics of genetics lets walk through some examples using Punnett Squares.

21 W w W W W W w w W w w w Parents in this cross are heterozygous (Ww).
Usually write the capital letter first W W W W w Lets say: W- dominant white w- recessive violet w W w w w Parents in this cross are heterozygous (Ww). Note: Make sure I can tell your capital letters from lowercase letters. What percentage of the offspring will have violet flowers? ANSWER: 25% (homozygous recessive)

22 Red hair (R) is dominant over blond hair (r)
Red hair (R) is dominant over blond hair (r). Make a cross between a heterozygous red head and a blond. R r r Rr rr What percentage of the offspring will have red hair? 50%

23 T t Tt tt t Let’s try some more…
In pea plants, tall pea plants (T) are dominant over short pea plants (t). Construct a Punnett Square for a heterozygous tall pea plant and a short pea plant. T t What are the percentage of phenotypes? Tt tt t 50% tall 50% short

24 Rr R R r 0%  Black eyes (R) is dominant over red eyes (r)
in rats. Make a cross between a homozygous rat with black eyes and a rat with red eyes. R R Rr What is the possibility of a red eye off springs? r 0%  Discuss with students other possible answers

25 Take out handout Use notes taken from power point to finish the punnett squares on back Will turn in for a grade

26 References http://www.athro.com/evo/gen/punnett.html


Download ppt "Take out genetic reproduction homework sheet"

Similar presentations


Ads by Google