Download presentation
Presentation is loading. Please wait.
Published byDavid Armstrong Modified over 6 years ago
1
Pearson Unit 1 Topic 3: Parallel & Perpendicular Lines 3-5: Parallel Lines and Triangles Pearson Texas Geometry ©2016 Holt Geometry Texas ©2007
2
TEKS Focus: (6)(D) Verify theorems about the relationships in triangles, including proof of the Pythagorean Theorem, the sum of interior angles, base angles of isosceles triangles, midsegments, and medians, and apply these relationships to solve problems. (1)(F) Analyze mathematical relationships to connect and communicate mathematical ideas. (1)(G) Display, explain, or justify mathematical ideas and arguments using precise mathematical language in written or oral communication.
3
Terms – Classifying by Angles
Vocabulary Term Definition Diagram Three acute angles. Acute Equiangular Three equal angles. One 90⁰ angle. Right Obtuse One obtuse angle.
4
Terms – Classifying by Sides
Vocabulary Term Definition Picture Equilateral Three congruent sides. At least two congruent sides. Isosceles Scalene No congruent sides.
5
An interior angle is formed by two sides of a triangle
An interior angle is formed by two sides of a triangle. An exterior angle is formed by one side of the triangle and extension of an adjacent side. 4 is an exterior angle. Exterior Interior 3 is an interior angle.
6
The remote interior angles of 4 are 1 and 2.
Each exterior angle has two remote interior angles. The 2 remote interior angles of a triangle are the two nonadjacent interior angles corresponding to each exterior angle of the triangle. 4 is an exterior angle. The remote interior angles of 4 are 1 and 2. Exterior Interior 3 is an interior angle.
7
An auxiliary line is a line that you can add to a diagram to help explain relationships in proofs.
8
Investigation: Angle Relationships in a Triangle
Sketchpad Straightedge and protractor
10
The Converse of the Corresponding Angles Postulate is used to construct parallel lines. The Parallel Postulate guarantees that for any line ℓ, you can always construct a parallel line through a point that is not on ℓ. Note
13
Example: 1 After an accident, the positions of
cars are measured by law enforcement to investigate the collision. Use the diagram drawn from the information collected to find mXYZ. mXYZ + mYZX + mZXY = 180° Sum. Thm Substitute 40 for mYZX and 62 for mZXY. mXYZ = 180 mXYZ = 180 Simplify. mXYZ = 78° Subtract 102 from both sides.
14
Example: 2 Lin. Pair Thm. and Add. Post. Substitute 62 for mYXZ.
After an accident, the positions of cars are measured by law enforcement to investigate the collision. Use the diagram drawn from the information collected to find mYWZ. Step 1 Find mWXY. mYXZ + mWXY = 180° Lin. Pair Thm. and Add. Post. 62 + mWXY = 180 Substitute 62 for mYXZ. mWXY = 118° Subtract 62 from both sides. Step 2 Find mYWZ. mYWX + mWXY + mXYW = 180° Sum. Thm Substitute 118 for mWXY and 12 for mXYW. mYWX = 180 mYWX = 180 Simplify. mYWX = 50° Subtract 130 from both sides. mYWX = m YWZ =50°
15
Example: 3 Use the diagram to find mMJK. mMJK + mJKM + mKMJ = 180°
Sum. Thm Substitute 104 for mJKM and 44 for mKMJ. mMJK = 180 mMJK = 180 Simplify. mMJK = 32° Subtract 148 from both sides.
16
Example: 4 One of the acute angles in a right triangle measures 2x°.
What is the measure of the other acute angle? Let the acute angles be A and B, with mA = 2x°. mA + mB = 90° Acute s of rt. are comp. 2x + mB = 90 Substitute 2x for mA. mB = (90 – 2x)° Subtract 2x from both sides.
17
Example: 5 Find mB. mB = 2x + 3 = 2(26) + 3 = 55° Ext. Thm.
mA + mB = mBCD Ext. Thm. Substitute 15 for mA, 2x + 3 for mB, and 5x – 60 for mBCD. 15 + 2x + 3 = 5x – 60 2x + 18 = 5x – 60 Simplify. Subtract 2x and add 60 to both sides. 78 = 3x 26 = x Divide by 3. mB = 2x + 3 = 2(26) + 3 = 55°
18
Example: 6 Find mACD. mACD = 6z – 9 = 6(25) – 9 = 141° Ext. Thm.
mACD = mA + mB Ext. Thm. Substitute 6z – 9 for mACD, 2z + 1 for mA, and 90 for mB. 6z – 9 = 2z 6z – 9 = 2z + 91 Simplify. Subtract 2z and add 9 to both sides. 4z = 100 z = 25 Divide by 4. mACD = 6z – 9 = 6(25) – 9 = 141°
19
EXTRA EXAMPLES NOT USED IN COMPOSITION BOOK FOLLOW.
ALSO REMEMBER TO LOG-ON TO YOUR PEARSON ACCOUNT TO LOOK AT OTHER EXAMPLES BEFORE BEGINNING THE ON-LINE HW AND THE WRITTEN HW.
20
Example: 7 The measure of one of the acute angles in a right triangle is 63.7°. What is the measure of the other acute angle? Let the acute angles be A and B, with mA = 63.7°. mA + mB = 90° Acute s of rt. are comp. mB = 90 Substitute 63.7 for mA. mB = 26.3° Subtract 63.7 from both sides.
21
Example: 8 The measure of one of the acute angles in a right triangle is x°. What is the measure of the other acute angle? Let the acute angles be A and B, with mA = x°. mA + mB = 90° Acute s of rt. are comp. x + mB = 90 Substitute x for mA. mB = (90 – x)° Subtract x from both sides.
22
Example: 9 The measure of one of the acute angles in a right triangle is What is the measure of the other acute angle? 2° 5 Let the acute angles be A and B, with mA = 2° 5 mA + mB = 90° Acute s of rt. are comp. mB = 90 2 5 Substitute for mA. 2 5 mB = 41 3° 5 Subtract from both sides. 2 5
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.