Presentation is loading. Please wait.

Presentation is loading. Please wait.

Complex numbers A2.

Similar presentations


Presentation on theme: "Complex numbers A2."ā€” Presentation transcript:

1 Complex numbers A2

2 Complex numbers: multiply and divide
KUS objectives BAT know how multiplying and dividing affects both the modulus and argument of the resulting complex number Starter: Use the trig addition formula to expand and simplify sin š‘„+30 š‘š‘œš‘  š‘„āˆ’45 š‘š‘œš‘  2š‘„+3š‘¦

3 Notes To be able to do this you need to be able to use the addition formulas for sine and cosine š‘ š‘–š‘› šœƒ 1 Ā± šœƒ 2 =š‘ š‘–š‘› šœƒ 1 š‘š‘œš‘  šœƒ 2 Ā±š‘š‘œš‘  šœƒ 1 š‘ š‘–š‘› šœƒ 2 š‘š‘œš‘  šœƒ 1 Ā± šœƒ 2 =š‘š‘œš‘  šœƒ 1 š‘š‘œš‘  šœƒ 2 āˆ“š‘ š‘–š‘› šœƒ 1 š‘ š‘–š‘› šœƒ 2 š‘š‘œš‘  2 šœƒ+ š‘ š‘–š‘› 2 šœƒ=1

4 Notes 2 Multiplying a complex number z1 by another complex number z2, both in the modulus-argument form š‘§ 1 = š‘Ÿ 1 š‘š‘œš‘  šœƒ 1 +š‘–š‘ š‘–š‘› šœƒ 1 š‘§ 2 = š‘Ÿ 2 š‘š‘œš‘  šœƒ 2 +š‘–š‘ š‘–š‘› šœƒ 2 š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘š‘œš‘  šœƒ 1 +š‘–š‘ š‘–š‘› šœƒ 1 Ɨ š‘Ÿ 2 š‘š‘œš‘  šœƒ 2 +š‘–š‘ š‘–š‘› šœƒ 2 Rewrite š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘š‘œš‘  šœƒ 1 +š‘–š‘ š‘–š‘› šœƒ 1 š‘š‘œš‘  šœƒ 2 +š‘–š‘ š‘–š‘› šœƒ 2 Now you can expand the double bracket as you would with a quadratic š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘š‘œš‘  šœƒ 1 š‘š‘œš‘  šœƒ 2 +š‘–š‘š‘œš‘  šœƒ 1 š‘ š‘–š‘› šœƒ 2 +š‘–š‘ š‘–š‘› šœƒ 1 š‘š‘œš‘  šœƒ 2 + š‘– 2 š‘ š‘–š‘› šœƒ 1 š‘ š‘–š‘› šœƒ 2 š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘š‘œš‘  šœƒ 1 š‘š‘œš‘  šœƒ 2 +š‘–š‘š‘œš‘  šœƒ 1 š‘ š‘–š‘› šœƒ 2 +š‘–š‘ š‘–š‘› šœƒ 1 š‘š‘œš‘  šœƒ 2 āˆ’š‘ š‘–š‘› šœƒ 1 š‘ š‘–š‘› šœƒ 2 Group terms using the identities to the left ļƒ  You can also factorise the ā€˜iā€™ out š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘š‘œš‘  šœƒ 1 + šœƒ 2 + š‘–š‘ š‘–š‘› šœƒ 1 + šœƒ 2 So when multiplying two complex numbers in the modulus-argument form: Multiply the moduli Add the arguments together The form of the answer is the same

5 Multiply to cancel terms on the denominator
Notes 4 Dividing a complex number z1 by another complex number z2, both in the modulus-argument form š‘§ 1 = š‘Ÿ 1 š‘š‘œš‘  šœƒ 1 +š‘–š‘ š‘–š‘› šœƒ 1 š‘§ 2 = š‘Ÿ 2 š‘š‘œš‘  šœƒ 2 +š‘–š‘ š‘–š‘› šœƒ 2 š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘š‘œš‘  šœƒ 1 +š‘–š‘ š‘–š‘› šœƒ 1 š‘Ÿ 2 š‘š‘œš‘  šœƒ 2 +š‘–š‘ š‘–š‘› šœƒ 2 š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘š‘œš‘  šœƒ 1 +š‘–š‘ š‘–š‘› šœƒ 1 š‘Ÿ 2 š‘š‘œš‘  šœƒ 2 +š‘–š‘ š‘–š‘› šœƒ 2 Ɨ š‘š‘œš‘  šœƒ 2 āˆ’š‘–š‘ š‘–š‘› šœƒ 2 š‘š‘œš‘  šœƒ 2 āˆ’š‘–š‘ š‘–š‘› šœƒ 2 š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘š‘œš‘  šœƒ 1 š‘š‘œš‘  šœƒ 2 āˆ’š‘–š‘š‘œš‘  šœƒ 1 š‘ š‘–š‘› šœƒ 2 +š‘–š‘ š‘–š‘› šœƒ 1 š‘š‘œš‘  šœƒ 2 āˆ’ š‘– 2 š‘ š‘–š‘› šœƒ 1 š‘ š‘–š‘› šœƒ 2 š‘Ÿ 2 š‘š‘œš‘  šœƒ 2 š‘š‘œš‘  šœƒ 2 āˆ’š‘–š‘š‘œš‘  šœƒ 2 š‘ š‘–š‘› šœƒ 2 +š‘–š‘ š‘–š‘› šœƒ 2 š‘š‘œš‘  šœƒ 2 āˆ’ š‘– 2 š‘ š‘–š‘› šœƒ 2 š‘ š‘–š‘› šœƒ 2 Multiply to cancel terms on the denominator š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘š‘œš‘  šœƒ 1 š‘š‘œš‘  šœƒ 2 āˆ’š‘–š‘š‘œš‘  šœƒ 1 š‘ š‘–š‘› šœƒ 2 +š‘–š‘ š‘–š‘› šœƒ 1 š‘š‘œš‘  šœƒ 2 +š‘ š‘–š‘› šœƒ 1 š‘ š‘–š‘› šœƒ 2 š‘Ÿ 2 š‘š‘œš‘  šœƒ 2 š‘š‘œš‘  šœƒ 2 āˆ’š‘–š‘š‘œš‘  šœƒ 2 š‘ š‘–š‘› šœƒ 2 +š‘–š‘ š‘–š‘› šœƒ 2 š‘š‘œš‘  šœƒ 2 +š‘ š‘–š‘› šœƒ 2 š‘ š‘–š‘› šœƒ 2 Multiply out Remove i2 š‘§ 1 š‘§ 2 = š‘Ÿ š‘Ÿ 2 š‘š‘œš‘  šœƒ 1 š‘š‘œš‘  šœƒ 2 +š‘ š‘–š‘› šœƒ 1 š‘ š‘–š‘› šœƒ 2 + š‘– š‘ š‘–š‘› šœƒ 1 š‘š‘œš‘  šœƒ 2 āˆ’š‘š‘œš‘  šœƒ 1 š‘ š‘–š‘› šœƒ 2 š‘š‘œš‘  2 šœƒ 2 + š‘ š‘–š‘› 2 šœƒ 2 Group real and complex š‘Ÿ š‘Ÿ 2 š‘š‘œš‘  šœƒ 1 āˆ’ šœƒ 2 + š‘–š‘ š‘–š‘› šœƒ 1 āˆ’ šœƒ 2 š‘§ 1 š‘§ 2 = Rewrite (again!) š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘š‘œš‘  šœƒ 1 āˆ’ šœƒ 2 +š‘–š‘ š‘–š‘› šœƒ 1 āˆ’ šœƒ 2 Rewrite terms

6 WB 5 a) Express the following calculation in the form x + iy:
3 š‘š‘œš‘  5šœ‹ 12 +š‘–š‘ š‘–š‘› 5šœ‹ 12 Ɨ4 š‘š‘œš‘  šœ‹ 12 +š‘–š‘ š‘–š‘› šœ‹ 12 3 š‘š‘œš‘  5šœ‹ 12 +š‘–š‘ š‘–š‘› 5šœ‹ 12 Ɨ4 š‘š‘œš‘  šœ‹ 12 +š‘–š‘ š‘–š‘› šœ‹ 12 Combine using one of the rules above Multiply the moduli Add the arguments 3(4) š‘š‘œš‘  5šœ‹ 12 + šœ‹ 12 +š‘–š‘ š‘–š‘› 5šœ‹ 12 + šœ‹ 12 Simplify terms 12 š‘š‘œš‘  šœ‹ 2 +š‘–š‘ š‘–š‘› šœ‹ 2 Calculate the cos and sin parts (in terms of i where needed) 12 0+š‘–(1) š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘š‘œš‘  šœƒ 1 + šœƒ 2 +š‘–š‘ š‘–š‘› šœƒ 1 + šœƒ 2 š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘’ š‘–( šœƒ 1 + šœƒ 2 ) š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘š‘œš‘  šœƒ 1 āˆ’ šœƒ 2 +š‘–š‘ š‘–š‘› šœƒ 1 āˆ’ šœƒ 2 š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘’ š‘– (šœƒ 1 āˆ’ šœƒ 2 ) Multiply out =12š‘–

7 WB 5 b) Express the following calculation in the form x + iy:
2 š‘š‘œš‘  šœ‹ 15 +š‘–š‘ š‘–š‘› šœ‹ 15 Ɨ3 š‘š‘œš‘  2šœ‹ 5 āˆ’š‘–š‘ š‘–š‘› 2šœ‹ 5 2 š‘š‘œš‘  šœ‹ 15 +š‘–š‘ š‘–š‘› šœ‹ 15 Ɨ3 š‘š‘œš‘  2šœ‹ 5 āˆ’š‘–š‘ š‘–š‘› 2šœ‹ 5 The cos and sin terms must be added for this to work! ļƒ  Rewrite using the rules you saw in 3A 2 š‘š‘œš‘  šœ‹ 15 +š‘–š‘ š‘–š‘› šœ‹ 15 Ɨ3 š‘š‘œš‘  āˆ’ 2šœ‹ 5 +š‘–š‘ š‘–š‘› āˆ’ 2šœ‹ 5 Combine using a rule from above 2(3) š‘š‘œš‘  šœ‹ 15 āˆ’ 2šœ‹ 5 +š‘–š‘ š‘–š‘› šœ‹ 15 āˆ’ 2šœ‹ 5 Simplify 6 š‘š‘œš‘  āˆ’ šœ‹ 3 +š‘–š‘ š‘–š‘› āˆ’ šœ‹ 3 Calculate the cos and sin parts š‘– āˆ’ š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘š‘œš‘  šœƒ 1 + šœƒ 2 +š‘–š‘ š‘–š‘› šœƒ 1 + šœƒ 2 š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘’ š‘–( šœƒ 1 + šœƒ 2 ) š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘š‘œš‘  šœƒ 1 āˆ’ šœƒ 2 +š‘–š‘ š‘–š‘› šœƒ 1 āˆ’ šœƒ 2 š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘’ š‘– (šœƒ 1 āˆ’ šœƒ 2 ) Multiply out =3āˆ’3 3 š‘–

8 WB 5 c) Express the following calculation in the form x + iy:
2 š‘š‘œš‘  šœ‹ 12 +š‘–š‘ š‘–š‘› šœ‹ š‘š‘œš‘  5šœ‹ 6 +š‘–š‘ š‘–š‘› 5šœ‹ 6 Combine using one of the rules above Divide the moduli Subtract the arguments 2 2 š‘š‘œš‘  šœ‹ 12 āˆ’ 5šœ‹ 6 +š‘–š‘ š‘–š‘› šœ‹ 12 āˆ’ 5šœ‹ 6 Simplify 2 2 š‘š‘œš‘  āˆ’ 3šœ‹ 4 +š‘–š‘ š‘–š‘› āˆ’ 3šœ‹ 4 You can work out the sin and cos parts 2 2 āˆ’ š‘– āˆ’ 1 2 Multiply out =āˆ’ 1 2 āˆ’ 1 2 š‘– š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘š‘œš‘  šœƒ 1 + šœƒ 2 +š‘–š‘ š‘–š‘› šœƒ 1 + šœƒ 2 š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘’ š‘–( šœƒ 1 + šœƒ 2 ) š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘š‘œš‘  šœƒ 1 āˆ’ šœƒ 2 +š‘–š‘ š‘–š‘› šœƒ 1 āˆ’ šœƒ 2 š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘’ š‘– (šœƒ 1 āˆ’ šœƒ 2 )

9 š‘§ 1 = š‘Ÿ 1 š‘’ š‘– šœƒ 1 š‘§ 2 = š‘Ÿ 2 š‘’ š‘– šœƒ 2 š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘’ š‘– šœƒ 1 š‘Ÿ 2 š‘’ š‘– šœƒ 2
Notes 3 Multiplying a complex number z1 by another complex number z2, both in the exponential form Multiplying a complex number z1 by another complex number z2, both in the exponential form š‘§ 1 = š‘Ÿ 1 š‘’ š‘– šœƒ 1 š‘§ 2 = š‘Ÿ 2 š‘’ š‘– šœƒ 2 š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘’ š‘– šœƒ 1 š‘Ÿ 2 š‘’ š‘– šœƒ 2 Rewrite ļƒ  Remember you add the powers in this situation š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘’ š‘– šœƒ 1 + š‘–šœƒ 2 You can factorise the power š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘’ š‘–( šœƒ 1 + šœƒ 2 ) You can see that in this form the process is essentially the same as for the modulus-argument form: Multiply the moduli together Add the arguments together The answer is in the same form

10 š‘§ 1 = š‘Ÿ 1 š‘’ š‘– šœƒ 1 š‘§ 2 = š‘Ÿ 2 š‘’ š‘– šœƒ 2 š‘Ÿ 1 š‘’ š‘– šœƒ 1 š‘Ÿ 2 š‘’ š‘– šœƒ 2 š‘§ 1 š‘§ 2 =
Notes 5 Dividing a complex number z1 by another complex number z2, both in the exponential form š‘§ 1 = š‘Ÿ 1 š‘’ š‘– šœƒ 1 š‘§ 2 = š‘Ÿ 2 š‘’ š‘– šœƒ 2 š‘Ÿ 1 š‘’ š‘– šœƒ 1 š‘Ÿ 2 š‘’ š‘– šœƒ 2 š‘§ 1 š‘§ 2 = Rewrite terms ļƒ  The denominator can be written with a negative power š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘’ š‘– šœƒ 1 š‘’ āˆ’š‘– šœƒ 2 Multiplying so add the powers š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘’ š‘– šœƒ 1 āˆ’š‘– šœƒ 2 Factorise the power š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘’ š‘– (šœƒ 1 āˆ’ šœƒ 2 ) You can see that in this form the process is essentially the same as for the modulus-argument form: Divide the moduli Subtract the arguments The answer is in the same form

11 š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘š‘œš‘  šœƒ 1 + šœƒ 2 +š‘–š‘ š‘–š‘› šœƒ 1 + šœƒ 2 š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘’ š‘–( šœƒ 1 + šœƒ 2 ) š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘š‘œš‘  šœƒ 1 āˆ’ šœƒ 2 +š‘–š‘ š‘–š‘› šœƒ 1 āˆ’ šœƒ 2 š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘’ š‘– (šœƒ 1 āˆ’ šœƒ 2 ) WB 6 Express the following calculations in the form x + iy: š‘Ž) 2 š‘’ šœ‹š‘– 6 Ɨ 3 š‘’ šœ‹š‘– š‘) 2 š‘’ šœ‹š‘– š‘’ šœ‹š‘– 6 š‘Ž) 2Ɨ 3 š‘’ šœ‹š‘– 6 + šœ‹š‘– 3 = š‘’ šœ‹š‘– 2 = cos šœ‹ 2 +š‘–š‘ š‘–š‘› šœ‹ 2 = š‘– = š‘– or 2š‘– 3 š‘) š‘’ šœ‹š‘– š‘’ šœ‹š‘– 6 = š‘’ šœ‹š‘– 3 āˆ’ šœ‹š‘– 6 = š‘’ šœ‹š‘– 6 = cos šœ‹ 6 +š‘–š‘ š‘–š‘› šœ‹š‘– 6 = š‘– = i

12 2 š‘š‘œš‘  šœ‹ 12 +š‘–š‘ š‘–š‘› šœ‹ 12 2 š‘š‘œš‘  5šœ‹ 6 +š‘–š‘ š‘–š‘› 5šœ‹ 6 = 2 š‘’ šœ‹š‘–/12 2 š‘’ 5šœ‹š‘–/6
š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘š‘œš‘  šœƒ 1 + šœƒ 2 +š‘–š‘ š‘–š‘› šœƒ 1 + šœƒ 2 š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘’ š‘–( šœƒ 1 + šœƒ 2 ) š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘š‘œš‘  šœƒ 1 āˆ’ šœƒ 2 +š‘–š‘ š‘–š‘› šœƒ 1 āˆ’ šœƒ 2 š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘’ š‘– (šœƒ 1 āˆ’ šœƒ 2 ) WB 7 Express 2 š‘š‘œš‘  šœ‹ 12 +š‘–š‘ š‘–š‘› šœ‹ š‘š‘œš‘  5šœ‹ 6 +š‘–š‘ š‘–š‘› 5šœ‹ in the form r š‘’ š‘–šœƒ 2 š‘š‘œš‘  šœ‹ 12 +š‘–š‘ š‘–š‘› šœ‹ š‘š‘œš‘  5šœ‹ 6 +š‘–š‘ š‘–š‘› 5šœ‹ = š‘’ šœ‹š‘–/ š‘’ 5šœ‹š‘–/6 = š‘’ š‘– šœ‹ 12 āˆ’ 5šœ‹ 6 = š‘’ 3šœ‹š‘– 4

13 so w=3 š‘’ āˆ’šœ‹š‘–/4 or w=3 š‘’ 3šœ‹š‘–/4 1st š‘§š‘¤ =3 š‘§ we know š‘§š‘¤ = š‘§ š‘¤ so š‘¤ =3
š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘š‘œš‘  šœƒ 1 + šœƒ 2 +š‘–š‘ š‘–š‘› šœƒ 1 + šœƒ 2 š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘’ š‘–( šœƒ 1 + šœƒ 2 ) š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘š‘œš‘  šœƒ 1 āˆ’ šœƒ 2 +š‘–š‘ š‘–š‘› šœƒ 1 āˆ’ šœƒ 2 š‘§ 1 š‘§ 2 = š‘Ÿ 1 š‘Ÿ 2 š‘’ š‘– (šœƒ 1 āˆ’ šœƒ 2 ) WB 8 š‘§=2+2š‘–, š¼š‘š š‘§š‘¤ =0 š‘Žš‘›š‘‘ š‘§š‘¤ =3 š‘§ use geometrical reasoning to find the two possibilities for w, giving them in exponential form 1st š‘§š‘¤ =3 š‘§ we know š‘§š‘¤ = š‘§ š‘¤ so š‘¤ =3 š‘§š‘¤ 2 š‘§š‘¤ 1 š‘§š‘¤ lies on the real axis š‘…š‘’ š¼š‘š 2nd arg š‘§ = arctan = šœ‹ 4 š‘§=2+2š‘– we know arg zw =arg z+arg š‘¤ 3šœ‹ 4 šœ‹ 4 im (š‘§š‘¤) =0 so arg (š‘§š‘¤) =0 or šœ‹ so arg š‘¤ =āˆ’ šœ‹ 4 or 3šœ‹ 4 so š‘§ is rotated āˆ’ šœ‹ 4 cw or 3šœ‹ 4 acw When multiplied by w so w=3 š‘’ āˆ’šœ‹š‘–/4 or w=3 š‘’ 3šœ‹š‘–/4

14 KUS objectives BAT know how multiplying and dividing affects both the modulus and argument of the resulting complex number self-assess One thing learned is ā€“ One thing to improve is ā€“

15 END


Download ppt "Complex numbers A2."

Similar presentations


Ads by Google