Download presentation
Presentation is loading. Please wait.
1
Complex numbers A2
2
Complex numbers: multiply and divide
KUS objectives BAT know how multiplying and dividing affects both the modulus and argument of the resulting complex number Starter: Use the trig addition formula to expand and simplify sin š„+30 ššš š„ā45 ššš 2š„+3š¦
3
Notes To be able to do this you need to be able to use the addition formulas for sine and cosine š šš š 1 Ā± š 2 =š šš š 1 ššš š 2 Ā±ššš š 1 š šš š 2 ššš š 1 Ā± š 2 =ššš š 1 ššš š 2 āš šš š 1 š šš š 2 ššš 2 š+ š šš 2 š=1
4
Notes 2 Multiplying a complex number z1 by another complex number z2, both in the modulus-argument form š§ 1 = š 1 ššš š 1 +šš šš š 1 š§ 2 = š 2 ššš š 2 +šš šš š 2 š§ 1 š§ 2 = š 1 ššš š 1 +šš šš š 1 Ć š 2 ššš š 2 +šš šš š 2 Rewrite š§ 1 š§ 2 = š 1 š 2 ššš š 1 +šš šš š 1 ššš š 2 +šš šš š 2 Now you can expand the double bracket as you would with a quadratic š§ 1 š§ 2 = š 1 š 2 ššš š 1 ššš š 2 +šššš š 1 š šš š 2 +šš šš š 1 ššš š 2 + š 2 š šš š 1 š šš š 2 š§ 1 š§ 2 = š 1 š 2 ššš š 1 ššš š 2 +šššš š 1 š šš š 2 +šš šš š 1 ššš š 2 āš šš š 1 š šš š 2 Group terms using the identities to the left ļ You can also factorise the āiā out š§ 1 š§ 2 = š 1 š 2 ššš š 1 + š 2 + šš šš š 1 + š 2 So when multiplying two complex numbers in the modulus-argument form: Multiply the moduli Add the arguments together The form of the answer is the same
5
Multiply to cancel terms on the denominator
Notes 4 Dividing a complex number z1 by another complex number z2, both in the modulus-argument form š§ 1 = š 1 ššš š 1 +šš šš š 1 š§ 2 = š 2 ššš š 2 +šš šš š 2 š§ 1 š§ 2 = š 1 ššš š 1 +šš šš š 1 š 2 ššš š 2 +šš šš š 2 š§ 1 š§ 2 = š 1 ššš š 1 +šš šš š 1 š 2 ššš š 2 +šš šš š 2 Ć ššš š 2 āšš šš š 2 ššš š 2 āšš šš š 2 š§ 1 š§ 2 = š 1 ššš š 1 ššš š 2 āšššš š 1 š šš š 2 +šš šš š 1 ššš š 2 ā š 2 š šš š 1 š šš š 2 š 2 ššš š 2 ššš š 2 āšššš š 2 š šš š 2 +šš šš š 2 ššš š 2 ā š 2 š šš š 2 š šš š 2 Multiply to cancel terms on the denominator š§ 1 š§ 2 = š 1 ššš š 1 ššš š 2 āšššš š 1 š šš š 2 +šš šš š 1 ššš š 2 +š šš š 1 š šš š 2 š 2 ššš š 2 ššš š 2 āšššš š 2 š šš š 2 +šš šš š 2 ššš š 2 +š šš š 2 š šš š 2 Multiply out Remove i2 š§ 1 š§ 2 = š š 2 ššš š 1 ššš š 2 +š šš š 1 š šš š 2 + š š šš š 1 ššš š 2 āššš š 1 š šš š 2 ššš 2 š 2 + š šš 2 š 2 Group real and complex š š 2 ššš š 1 ā š 2 + šš šš š 1 ā š 2 š§ 1 š§ 2 = Rewrite (again!) š§ 1 š§ 2 = š 1 š 2 ššš š 1 ā š 2 +šš šš š 1 ā š 2 Rewrite terms
6
WB 5 a) Express the following calculation in the form x + iy:
3 ššš 5š 12 +šš šš 5š 12 Ć4 ššš š 12 +šš šš š 12 3 ššš 5š 12 +šš šš 5š 12 Ć4 ššš š 12 +šš šš š 12 Combine using one of the rules above Multiply the moduli Add the arguments 3(4) ššš 5š 12 + š 12 +šš šš 5š 12 + š 12 Simplify terms 12 ššš š 2 +šš šš š 2 Calculate the cos and sin parts (in terms of i where needed) 12 0+š(1) š§ 1 š§ 2 = š 1 š 2 ššš š 1 + š 2 +šš šš š 1 + š 2 š§ 1 š§ 2 = š 1 š 2 š š( š 1 + š 2 ) š§ 1 š§ 2 = š 1 š 2 ššš š 1 ā š 2 +šš šš š 1 ā š 2 š§ 1 š§ 2 = š 1 š 2 š š (š 1 ā š 2 ) Multiply out =12š
7
WB 5 b) Express the following calculation in the form x + iy:
2 ššš š 15 +šš šš š 15 Ć3 ššš 2š 5 āšš šš 2š 5 2 ššš š 15 +šš šš š 15 Ć3 ššš 2š 5 āšš šš 2š 5 The cos and sin terms must be added for this to work! ļ Rewrite using the rules you saw in 3A 2 ššš š 15 +šš šš š 15 Ć3 ššš ā 2š 5 +šš šš ā 2š 5 Combine using a rule from above 2(3) ššš š 15 ā 2š 5 +šš šš š 15 ā 2š 5 Simplify 6 ššš ā š 3 +šš šš ā š 3 Calculate the cos and sin parts š ā š§ 1 š§ 2 = š 1 š 2 ššš š 1 + š 2 +šš šš š 1 + š 2 š§ 1 š§ 2 = š 1 š 2 š š( š 1 + š 2 ) š§ 1 š§ 2 = š 1 š 2 ššš š 1 ā š 2 +šš šš š 1 ā š 2 š§ 1 š§ 2 = š 1 š 2 š š (š 1 ā š 2 ) Multiply out =3ā3 3 š
8
WB 5 c) Express the following calculation in the form x + iy:
2 ššš š 12 +šš šš š ššš 5š 6 +šš šš 5š 6 Combine using one of the rules above Divide the moduli Subtract the arguments 2 2 ššš š 12 ā 5š 6 +šš šš š 12 ā 5š 6 Simplify 2 2 ššš ā 3š 4 +šš šš ā 3š 4 You can work out the sin and cos parts 2 2 ā š ā 1 2 Multiply out =ā 1 2 ā 1 2 š š§ 1 š§ 2 = š 1 š 2 ššš š 1 + š 2 +šš šš š 1 + š 2 š§ 1 š§ 2 = š 1 š 2 š š( š 1 + š 2 ) š§ 1 š§ 2 = š 1 š 2 ššš š 1 ā š 2 +šš šš š 1 ā š 2 š§ 1 š§ 2 = š 1 š 2 š š (š 1 ā š 2 )
9
š§ 1 = š 1 š š š 1 š§ 2 = š 2 š š š 2 š§ 1 š§ 2 = š 1 š š š 1 š 2 š š š 2
Notes 3 Multiplying a complex number z1 by another complex number z2, both in the exponential form Multiplying a complex number z1 by another complex number z2, both in the exponential form š§ 1 = š 1 š š š 1 š§ 2 = š 2 š š š 2 š§ 1 š§ 2 = š 1 š š š 1 š 2 š š š 2 Rewrite ļ Remember you add the powers in this situation š§ 1 š§ 2 = š 1 š 2 š š š 1 + šš 2 You can factorise the power š§ 1 š§ 2 = š 1 š 2 š š( š 1 + š 2 ) You can see that in this form the process is essentially the same as for the modulus-argument form: Multiply the moduli together Add the arguments together The answer is in the same form
10
š§ 1 = š 1 š š š 1 š§ 2 = š 2 š š š 2 š 1 š š š 1 š 2 š š š 2 š§ 1 š§ 2 =
Notes 5 Dividing a complex number z1 by another complex number z2, both in the exponential form š§ 1 = š 1 š š š 1 š§ 2 = š 2 š š š 2 š 1 š š š 1 š 2 š š š 2 š§ 1 š§ 2 = Rewrite terms ļ The denominator can be written with a negative power š§ 1 š§ 2 = š 1 š 2 š š š 1 š āš š 2 Multiplying so add the powers š§ 1 š§ 2 = š 1 š 2 š š š 1 āš š 2 Factorise the power š§ 1 š§ 2 = š 1 š 2 š š (š 1 ā š 2 ) You can see that in this form the process is essentially the same as for the modulus-argument form: Divide the moduli Subtract the arguments The answer is in the same form
11
š§ 1 š§ 2 = š 1 š 2 ššš š 1 + š 2 +šš šš š 1 + š 2 š§ 1 š§ 2 = š 1 š 2 š š( š 1 + š 2 ) š§ 1 š§ 2 = š 1 š 2 ššš š 1 ā š 2 +šš šš š 1 ā š 2 š§ 1 š§ 2 = š 1 š 2 š š (š 1 ā š 2 ) WB 6 Express the following calculations in the form x + iy: š) 2 š šš 6 Ć 3 š šš š) 2 š šš š šš 6 š) 2Ć 3 š šš 6 + šš 3 = š šš 2 = cos š 2 +šš šš š 2 = š = š or 2š 3 š) š šš š šš 6 = š šš 3 ā šš 6 = š šš 6 = cos š 6 +šš šš šš 6 = š = i
12
2 ššš š 12 +šš šš š 12 2 ššš 5š 6 +šš šš 5š 6 = 2 š šš/12 2 š 5šš/6
š§ 1 š§ 2 = š 1 š 2 ššš š 1 + š 2 +šš šš š 1 + š 2 š§ 1 š§ 2 = š 1 š 2 š š( š 1 + š 2 ) š§ 1 š§ 2 = š 1 š 2 ššš š 1 ā š 2 +šš šš š 1 ā š 2 š§ 1 š§ 2 = š 1 š 2 š š (š 1 ā š 2 ) WB 7 Express 2 ššš š 12 +šš šš š ššš 5š 6 +šš šš 5š in the form r š šš 2 ššš š 12 +šš šš š ššš 5š 6 +šš šš 5š = š šš/ š 5šš/6 = š š š 12 ā 5š 6 = š 3šš 4
13
so w=3 š āšš/4 or w=3 š 3šš/4 1st š§š¤ =3 š§ we know š§š¤ = š§ š¤ so š¤ =3
š§ 1 š§ 2 = š 1 š 2 ššš š 1 + š 2 +šš šš š 1 + š 2 š§ 1 š§ 2 = š 1 š 2 š š( š 1 + š 2 ) š§ 1 š§ 2 = š 1 š 2 ššš š 1 ā š 2 +šš šš š 1 ā š 2 š§ 1 š§ 2 = š 1 š 2 š š (š 1 ā š 2 ) WB 8 š§=2+2š, š¼š š§š¤ =0 ššš š§š¤ =3 š§ use geometrical reasoning to find the two possibilities for w, giving them in exponential form 1st š§š¤ =3 š§ we know š§š¤ = š§ š¤ so š¤ =3 š§š¤ 2 š§š¤ 1 š§š¤ lies on the real axis š
š š¼š 2nd arg š§ = arctan = š 4 š§=2+2š we know arg zw =arg z+arg š¤ 3š 4 š 4 im (š§š¤) =0 so arg (š§š¤) =0 or š so arg š¤ =ā š 4 or 3š 4 so š§ is rotated ā š 4 cw or 3š 4 acw When multiplied by w so w=3 š āšš/4 or w=3 š 3šš/4
14
KUS objectives BAT know how multiplying and dividing affects both the modulus and argument of the resulting complex number self-assess One thing learned is ā One thing to improve is ā
15
END
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.