Download presentation
Presentation is loading. Please wait.
1
(Lawrence Berkeley National Laboratory)
Isomer Spectroscopy of the Heaviest Elements Rod Clark (Lawrence Berkeley National Laboratory)
2
Outline Motivation for studying structure of heaviest nuclei
K-isomers in Z≥100 region The Berkeley Gas-Filled Separator (BGS) Recent results: 50Ti+208Pb→256Rf+2n (σ≈20nb) 48Ca+209Bi→255Lr+2n (σ≈300nb) Heavy element spectroscopy with GRETINA+BGS Summary
3
Motivation Single-particle levels → shell structure
Next major spherical gaps Deformed gaps Deformation and collectivity K-isomerism Rotational structures Low-lying vibrations Pairing properties Multi-quasiparticle states Effects on rotation Effects on alpha decay Effects fission decay
4
K-Isomers in Z≥100 Nuclei RITU at JYFL FMA at ANL
Nature (2006) FMA at ANL
5
Conversion Electron and Gamma Spectroscopy
S.K.Tandel et al., PRL (2006)
6
Berkeley Gas-filled Separator
Large acceptance: 45 msr (± 9° vertical, ±4.5° horizontal) Highest transmission ( Ni+Pb: 70% Ca+Pb: 60% Mg+U: 18% ) Large bend angle: 70° Lowest background rates ( 40Hz/pmA 20Hz/pmA 100Hz/pmA )
7
Focal Plane Detectors 16×16 strip DSSD 1mm thick, 5cm by 5cm
1) Recoil implanted in pixel of DSSD 2) Burst of conversion electrons in same pixel from isomer decay 3) Gamma-rays in coincidence with electron burst 4) Recoil decays in same pixel by alpha/fission Key idea was to tag on isomer by searching for burst of conversion electrons and using a single pixel as a calorimeter. G.D. Jones (Liverpool), NIM A (2002).
8
256Rf: Z=104, N=152 r-e-e-f r-e-e-f
50Ti+208Pb→256Rf+2n at 243 MeV (σ≈20nb), 200pnA, 6 days Electrons Gamma Rays r-e-e-f r-e-e-f
9
Rf 256 104 152 >2200 t1/2=27(6)ms Kp=(7-,8-) ≈1400 17(2)ms 6-
0+ 2+ 4+ Kp=(2-) 3- 4- 5- 6- ≈946 ≈46 256 Rf 104 152 Kp=(5-) ≈1120 25(2)ms ≈1400 17(2)ms Kp=(7-,8-) t1/2=27(6)ms >2200 900 H. B. Jeppesen et al., Submitted to PRL
10
255Lr: Z=103, N=152 48Ca+209Bi→255Lr+2n at 222 MeV (σ≈300nb), 300pnA, 4 days 7/2 19/2 ~x+800 ~x+1400 x
11
247Es: Z=99, N=148 g-spectroscopy following a-decay of 255Lr→251Md→247Es
12
Eisteinium (Z=99) Systematics Re-examined
251Md 251Md a1 a2 a g=243 g=294 g=243 g=294 0+x 247Es 247Es F.P.Hessberger et al., EPJ A (2005) A. Chatillon et al., EPJ A (2006)
13
? Eisteinium (Z=99) Systematics Re-examined 251Md 251Md a1 a2 a g=243
247Es 247Es F.P.Hessberger et al., EPJ A (2005) A. Chatillon et al., EPJ A (2006)
14
Transfermium Spectroscopy with GRETINA+BGS
The best heavy element separator with the best g-ray detector system 48Ca+208Pb→254No+2n σ~2 μb 2000 Counts Energy (keV) 50Ti+208Pb→256Rf+2n σ~20 nb 25 Counts 6+→4+ Assumptions for simulation: sTOT = 1 barn Target = 0.5 mg/cm2 Beam Current = 50 pnA eg / crystal = Mg = 10 → 30.3 kHz/crystal Energy (keV)
15
Summary New generation of spectroscopy experiments on heaviest elements RITU at JYFL, FMA at ANL, BGS at LBNL, GABRIELLA at Dubna, SHIP at GSI, VAMOS at GANIL+… Decay spectroscopy at BGS able to reach Sg (Z=106) - single-particle states - K-isomerism - low-lying rotational and vibrational modes Prompt spectroscopy with GRETINA at BGS able to reach Rf (Z=104) - rotation versus fission - moments of inertia, alignments - configuration assignments Can modern microscopic theories reproduce experiment?
16
Thanks!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.