Download presentation
Presentation is loading. Please wait.
Published byAudra Anderson Modified over 6 years ago
1
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2017 Room 150 Harvill Building 10: :50 Mondays, Wednesdays & Fridays. Welcome
2
Lecturer’s desk Projection Booth Screen Screen Harvill 150 renumbered
Row A 15 14 Row A 13 3 2 1 Row A Row B 23 20 Row B 19 5 4 3 2 1 Row B Row C 25 21 Row C 20 6 5 1 Row C Row D 29 23 Row D 22 8 7 1 Row D Row E 31 23 Row E 23 9 8 1 Row E Row F 35 26 Row F 25 11 10 1 Row F Row G 35 26 Row G 25 11 10 1 Row G Row H 37 28 27 13 Row H 12 1 Row H 41 29 28 14 Row J 13 1 Row J 41 29 Row K 28 14 13 1 Row K Row L 33 25 Row L 24 10 9 1 Row L Row M 21 20 19 Row M 18 4 3 2 1 Row M Row N 15 1 Row P 15 1 Harvill 150 renumbered table 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Projection Booth Left handed desk
3
A note on doodling
4
Lab sessions Continue Project 3 This Week
Everyone will want to be enrolled in one of the lab sessions Continue Project 3 This Week
7
Schedule of readings Before next exam (November 17th)
Please read chapters in OpenStax textbook Please read Chapters 2, 3, and 4 in Plous Chapter 2: Cognitive Dissonance Chapter 3: Memory and Hindsight Bias Chapter 4: Context Dependence
8
Independent samples t-test
8
9
Five steps to hypothesis testing
Step 1: Identify the research problem (hypothesis) Describe the null and alternative hypotheses Step 2: Decision rule Alpha level? (α = .05 or .01)? Critical statistic (e.g. z or t) value? Step 3: Calculations Step 4: Make decision whether or not to reject null hypothesis If observed z (or t) is bigger then critical z (or t) then reject null Step 5: Conclusion - tie findings back in to research problem
10
Hypothesis testing with t-tests
The result is “statistically significant” if: the observed statistic is larger than the critical statistic observed stat > critical stat If we want to reject the null, we want our t (or z or r or F or x2) to be big!! the p value is less than 0.05 (which is our alpha) p < If we want to reject the null, we want our “p” to be small!! we reject the null hypothesis then we have support for our alternative hypothesis Review
11
Independent samples t-test
Are the two means significantly different from each other, or is the difference just due to chance? Independent samples t-test Donald is a consultant and leads training sessions. As part of his training sessions, he provides the students with breakfast. He has noticed that when he provides a full breakfast people seem to learn better than when he provides just a small meal (donuts and muffins). So, he put his hunch to the test. He had two classes, both with three people enrolled. The one group was given a big meal and the other group was given only a small meal. He then compared their test performance at the end of the day. Please test with an alpha = .05 Big Meal 22 25 Small meal 19 23 21 Mean= 21 Mean= 24 Got to figure this part out: We want to average from 2 samples - Call it “pooled” x1 – x2 t = 24 – 21 variability t = variability 11
12
α = .05 Independent samples t-test
Step 1: Identify the research problem Did the size of the meal affect the learning / test scores? Step 2: Describe the null and alternative hypotheses Step 3: Decision rule α = .05 Two tailed test n1 = 3; n2 = 3 Degrees of freedom total (df total) = (n1 - 1) + (n2 – 1) = (3 - 1) + (3 – 1) = 4 Critical t(4) = 2.776 Step 4: Calculate observed t score 12
13
Notice: Simple Average = 3.5
Mean= 21 Mean= 24 Big Meal Deviation From mean -2 1 Small Meal Deviation From mean -2 2 Squared deviation 4 1 Squared Deviation 4 Big Meal 22 25 Small meal 19 23 21 Σ = 6 Σ = 8 6 3 Notice: s2 = 3.0 1 2 1 Notice: Simple Average = 3.5 8 4 Notice: s2 = 4.0 2 2 2 S2pooled = (n1 – 1) s12 + (n2 – 1) s22 n1 + n2 - 2 S2pooled = (3 – 1) (3) + (3 – 1) (4) = 3.5 13
14
S2p = 3.5 Mean= 21 Mean= 24 Big Meal Deviation From mean -2 1 Small Meal Deviation From mean -2 2 Squared deviation 4 1 Squared Deviation 4 Participant 1 2 3 Big Meal 22 25 Small meal 19 23 21 Σ = 6 Σ = 8 = 24 – 21 1.5275 = 1.964 3.5 3.5 3 3 Observed t Observed t = Critical t = 2.776 1.964 is not larger than so, we do not reject the null hypothesis t(4) = 1.964; n.s. Conclusion: There appears to be no difference between the groups 14
15
Type of test with degrees of freedom Value of observed statistic
We compared test scores for large and small meals. The mean test scores for the big meal was 24, and was 21 for the small meal. A t-test was calculated and there appears to be no significant difference in test scores between the two types of meals, t(4) = 1.964; n.s. Type of test with degrees of freedom n.s. = “not significant” p<0.05 = “significant” Value of observed statistic Start summary with two means (based on DV) for two levels of the IV Finish with statistical summary t(4) = 1.96; ns Describe type of test (t-test versus anova) with brief overview of results Or if it *were* significant: t(9) = 3.93; p < 0.05 15
16
Complete a t-test Mean= 21 Mean= 24 Participant 1 2 3 Big Meal 22 25
Small meal 19 23 21 16
17
Complete a t-test Mean= 21 Mean= 24 Participant 1 2 3 Big Meal 22 25
Small meal 19 23 21 17
18
Complete a t-test Mean= 21 Mean= 24 Participant 1 2 3 Big Meal 22 25
Small meal 19 23 21 If checked you’ll want to include the labels in your variable range If checked, you’ll want to include the labels in your variable range If checked you’ll want to include the labels in your variable range 18
19
Complete a t-test Finding Means Finding Means 19
20
Complete a t-test This is variance for each sample
(Remember, variance is just standard deviation squared) Please note: “Pooled variance” is just like the average of the two sample variances, so notice that the average of 3 and 4 is 3.5 20
21
Complete a t-test This is “n” for each sample
(Remember, “n” is just number of observations for each sample) This is “n” for each sample (Remember, “n” is just number of observations for each sample) Remember, “degrees of freedom” is just (n-1) for each sample. So for sample 1: n-1 =3-1 = 2 And for sample 2: n-1=2-1 = 2 Then, df = 2+2=4 df = “degrees of freedom” 21
22
Finding degrees of freedom
Complete a t-test Finding degrees of freedom 22
23
Complete a t-test Finding Observed t 23
24
Complete a t-test Finding Critical t 24
25
Finding Critical t 25
26
Finding p value (Is it less than .05?)
Complete a t-test Finding p value (Is it less than .05?) 26
27
Step 4: Make decision whether or not to reject null hypothesis
Complete a t-test Step 4: Make decision whether or not to reject null hypothesis Reject when: observed stat > critical stat is not bigger than 2.776 “p” is less than 0.05 (or whatever alpha is) p = is not less than 0.05 Step 5: Conclusion - tie findings back in to research problem There was no significant difference, there is no evidence that size of meal affected test scores 27
28
Type of test with degrees of freedom Value of observed statistic
We compared test scores for large and small meals. The mean test scores for the big meal was 24, and was 21 for the small meal. A t-test was calculated and there appears to be no significant difference in test scores between the two types of meals, t(4) = 1.964; n.s. Type of test with degrees of freedom n.s. = “not significant” p<0.05 = “significant” Value of observed statistic Start summary with two means (based on DV) for two levels of the IV Finish with statistical summary t(4) = 1.96; ns Describe type of test (t-test versus Anova) with brief overview of results Or if it *were* significant: t(9) = 3.93; p < 0.05 28
29
Graphing your t-test results 29
30
Graphing your t-test results 30
31
Graphing your t-test results Chart Layout 31
32
Fill out titles 32
33
Where are we? Donald is a consultant and leads training sessions. As part of his training sessions, he provides the students with breakfast. He has noticed that when he provides a full breakfast people seem to learn better than when he provides just a small meal (donuts and muffins). So, he put his hunch to the test. He had two classes, both with three people enrolled. The one group was given a big meal and the other group was given only a small meal. He then compared their test performance at the end of the day. Please test with an alpha = .05 Big Meal 22 25 Small meal 19 23 21 Mean= 24 Mean= 21 We compared test scores for large and small meals. The mean test scores for the big meal was 24, and was 21 for the small meal. A t-test was calculated and there appears to be no significant difference in test scores between the two types of meals, t(4) = 1.964; n.s. 33
34
What if we ran more subjects?
Independent samples t-test Donald is a consultant and leads training sessions. As part of his training sessions, he provides the students with breakfast. He has noticed that when he provides a full breakfast people seem to learn better than when he provides just a small meal (donuts and muffins). So, he put his hunch to the test. This time he had two classes, both with nine people enrolled. The one group was given a big meal and the other group was given only a small meal. He then compared their test performance at the end of the day. Please test with an alpha = .05 Big Meal 22 25 Small meal 19 23 21 Mean= 21 Mean= 24 34
35
Notice: Additional participants don’t affect this part of the problem
Independent samples t-test Notice: Additional participants don’t affect this part of the problem Step 1: Identify the research problem Did the size of the meal affect the test scores? Step 2: Describe the null and alternative hypotheses Ho: The size of the meal has no effect on test scores H1: The size of the meal does have an effect on test scores One tail or two tail test? 35
36
Notice: Two different ways to think about it
Hypothesis testing Step 3: Decision rule α = .05 n1 = 9; n2 = 9 Degrees of freedom total (df total) = (n1 - 1) + (n2 – 1) = (9 - 1) + (9 – 1) = 16 Degrees of freedom total (df total) = (n total - 2) = 18 – 2 = 16 two tailed test Notice: Two different ways to think about it Critical t(16) = 2.12 36
37
two tail test α= .05 (df) = 16 Critical t(16) = 2.12 37
38
8 8 Step 4: Calculate observed t-score 18 2.25 Notice: s2 = 2.25 24
Mean= 21 Mean= 24 Big Meal Deviation From mean 2 -1 Small Meal Deviation From mean 2 -2 Squared deviation 4 1 Squared Deviation 4 Big Meal 22 25 Small meal 19 23 21 Σ = 18 Σ = 24 18 2.25 Notice: s2 = 2.25 1 8 1 Notice: Simple Average = 2.625 24 3.00 Notice: s2 = 3.0 2 2 8 38
39
Sp2 = 2.625 S21 = 2.25 S22 = 3.00 Step 4: Calculate observed t-score
Mean= 21 Mean= 24 Big Meal 22 25 Small meal 19 23 21 Sp2 = 2.625 S21 = 2.25 S22 = 3.00 S2pooled = (n1 – 1) s12 + (n2 – 1) s22 n1 + n2 - 2 S2pooled = (9 – 1) (2.25) + (9 – 1) (3) = 2.625 39
40
Sp2 = 2.625 S21 = 2.25 S22 = 3.00 Step 4: Calculate observed t-score
Mean= 21 Mean= 24 Big Meal 22 25 Small meal 19 23 21 Sp2 = 2.625 S21 = 2.25 S22 = 3.00 = 24 – 21 0.7638 = 2.625 2.625 9 9 40
41
Step 5: Make decision whether or not to reject null hypothesis
Summarizing your t-test results Step 5: Make decision whether or not to reject null hypothesis Observed t = Critical t = 3.928 is farther out on the curve than 2.120 so, we do reject the null hypothesis t(16) = 3.928; p < 0.05 41
42
We compared test scores for large and small meals. The mean test
Summarizing your t-test results Step 6: Conclusion We compared test scores for large and small meals. The mean test score for the big meal was 24, and was 21 for the small meal. A t-test was calculated and there was a significant difference in test scores between the two types of meals t(16) = 3.928; p < 0.05 42
43
Let’s run more subjects using our excel!
43
44
Let’s run more subjects using our excel!
Finding Means Finding Means 44
45
Let’s run more subjects using our excel!
This is variance for each sample (Remember, variance is just standard deviation squared) Please note: “Pooled variance” is just like the average of the two sample variances, so notice that the average of 2.25 and 3 is 2.625 45
46
Let’s run more subjects using our excel!
This is “n” for each sample (Remember, “n” is just number of observations for each sample) This is “n” for each sample (Remember, “n” is just number of observations for each sample) Remember, “degrees of freedom” is just (n-1) for each sample. So for sample 1: n-1 =9-1 = 8 And for sample 2: n-1=9-1 = 8 Then, df = 8+8=16 df = “degrees of freedom” 46
47
Let’s run more subjects using our excel!
Finding degrees of freedom Finding degrees of freedom 47
48
Let’s run more subjects using our excel!
Finding Observed t 48
49
Let’s run more subjects using our excel!
Finding Critical t 49
50
Let’s run more subjects using our excel!
Remember, if the “t Stat” is bigger than the “t Critical” then we “reject the null”, and conclude we have a significant effect Remember, if the “t Stat” is bigger than the “t Critical” then we “reject the null”, and conclude we have a significant effect 50
51
Let’s run more subjects using our excel!
Finding p value (Is it less than .05?) 51
52
Let’s run more subjects using our excel!
In this case, p = which is less than 0.05, so we “do reject the null” Remember, if the “p” is less than 0.05 then we “reject the null”, and conclude we have a significant effect 52
53
Let’s run more subjects using our excel!
We compared test scores for large and small meals. The mean test score for the big meal was 24, and was 21 for the small meal. A t-test was calculated and there was a significant difference in test scores between the two types of meals t(16) = 3.928; p < 0.05 Let’s run more subjects using our excel! 53
54
What happened? We ran more subjects: Increased n
So, we decreased variability Easier to find effect significant even though effect size didn’t change This is the sample size This is the sample size Small sample Big sample 54
55
What happened? We ran more subjects: Increased n
So, we decreased variability Easier to find effect significant even though effect size didn’t change This is variance for each sample (Remember, variance is just standard deviation squared) This is variance for each sample (Remember, variance is just standard deviation squared) Small sample Big sample 55
56
Homework .
57
Homework .
58
This is significant with alpha of 0.05
Homework Type of instruction Exam score 50 40 2-tail 0.05 CAUTION This is significant with alpha of 0.05 BUT NOT WITH alpha of 0.01 2.66 2.02 38 p = yes The average exam score for those with instruction was 50, while the average exam score for those with no instruction was 40. A t-test was conducted and found that instruction significantly improved exam scores, t(38) = 2.66; p < 0.05
59
Homework . Type of Staff Travel Expenses 142.5 130.29 2-tail 0.05 2.2 11 p = 0.153 no The average expenses for sales staff is 142.5, while the average expenses for the audit staff was A t-test was conducted and no significant difference was found, t(11) = 1.54; n.s.
60
If the observed t is less than one it will never be significant
. Homework Location of lot Number of cars 86.24 92.04 2-tail 0.05 -0.88 2.01 51 p = 0.38 no Fun fact: If the observed t is less than one it will never be significant The average number of cars in the Ocean Drive Lot was 86.24, while the average number of cars in Rio Rancho Lot was A t-test was conducted and no significant difference between the number of cars parked in these two lots, t(51) = -.88; n.s.
61
Thank you! See you next time!!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.