Presentation is loading. Please wait.

Presentation is loading. Please wait.

Seminar on Markov Chains and Mixing Times Elad Katz

Similar presentations


Presentation on theme: "Seminar on Markov Chains and Mixing Times Elad Katz"β€” Presentation transcript:

1 Seminar on Markov Chains and Mixing Times Elad Katz 11.1.17
Coupling from the Past Seminar on Markov Chains and Mixing Times Elad Katz

2 Monotone CFTP In the general setting, we have to keep track of |Ξ©| mappings, which is usually infeasible. Monotone setting: A partial order ≀ such that xβ‰€π‘¦β‡’πœ™ π‘₯, π‘ˆ 0 β‰€πœ™ 𝑦, π‘ˆ 0 States 0 , 1 such that 0 ≀𝑠≀ 1 for every π‘ βˆˆΞ©. Now we only need to keep track of 2 mappings. The operation respects the order

3 Monotone CFTP 𝑇←1 do high ← 1 low ← 0 for 𝑑=βˆ’T to βˆ’1 do high β†πœ‘(high, π‘ˆ 𝑑 ) low β†πœ‘(low, π‘ˆ 𝑑 ) 𝑇←2𝑇 until high = low return high Time & space complexity Always converges

4 Example Consider the state space of the possible tilings of 60Β° rhombuses inside a regular hexagon. Define a partial order: πœŽβ‰€πœ when the cubes of 𝜎 are a subset of the cubes of 𝜏. 1 Wish to sample uniformly ≀ ≀ ≀ ≀

5 Example Transitions: Uniformly select a site (vertex) Flip a coin (1) Heads: do nothing Tails: If possible, add / remove the cube there (2) Heads: If possible, add a cube there Tails: If possible, remove the cube there Same chain, but (1) will not work. 0.5

6 Example (2) Definition: A spin system consists of the following: Set 𝑉
0.5 π‘Žβ†’1 𝑏→1 1 7 1 7 Definition: A spin system consists of the following: Set 𝑉 Ξ©= 𝑓:𝑉→{1,βˆ’1} Distribution πœ‹ on Ξ© The system is attractive if the following holds: For every 𝜎∈Ω and 𝑣,π‘€βˆˆπ‘‰, πœ‹ 𝜎 𝑣=1,𝑀=1 πœ‹ 𝜎 𝑣=1,𝑀=βˆ’1 β‰₯ πœ‹ 𝜎 𝑣=βˆ’1,𝑀=1 πœ‹ 𝜎 𝑣=βˆ’1,𝑀=βˆ’1 . Using Gibbs sampler, create a chain with stationary distribution πœ‹: Move from 𝜎 to 𝜎 𝑣=βˆ’πœŽ(𝑣) w. p. 1 𝑉 β‹… πœ‹( 𝜎 𝑣=βˆ’πœŽ(𝑣) ) πœ‹ 𝜎 𝑣=1 +πœ‹( 𝜎 𝑣=βˆ’1 ) . 5 14 5 14 π‘Žβ†’1 π‘β†’βˆ’1 π‘Žβ†’βˆ’1 𝑏→1 0.2 0.2 1 3 1 3 π‘Žβ†’βˆ’1 π‘β†’βˆ’1 1 6 1 6 0.1

7 Example (2) Use the following randomization: Uniformly select π‘£βˆˆπ‘‰, π‘βˆˆ 0, 1 . Move from 𝜎 to 𝜎 𝑣=1 if 𝑝< πœ‹( 𝜎 𝑣=1 ) πœ‹ 𝜎 𝑣=1 +πœ‹( 𝜎 𝑣=βˆ’1 ) , otherwise switch to 𝜎 𝑣=βˆ’1 . Claim: This randomization respects the following order: πœŽβ‰€πœ when 𝜎 𝑣 β‰€πœ 𝑣 for all π‘£βˆˆπ‘‰. Proof: Let πœŽβ‰€πœ, and let π‘£βˆˆπ‘‰ be the selected spin. Attractiveness implies πœ‹ 𝜏 𝑣=1 πœ‹ 𝜏 𝑣=βˆ’1 β‰₯ πœ‹ 𝜎 𝑣=1 πœ‹ 𝜎 𝑣=βˆ’1 . The order can only be violated if the transitions are πœŽβ†’ 𝜎 𝑣=1 and πœβ†’ 𝜏 𝑣=βˆ’1 , which implies πœ‹( 𝜏 𝑣=1 ) πœ‹ 𝜏 𝑣=1 +πœ‹( 𝜏 𝑣=βˆ’1 ) ≀𝑝< πœ‹ 𝜎 𝑣=1 πœ‹ 𝜎 𝑣=1 +πœ‹ 𝜎 𝑣=βˆ’1 β‡’ πœ‹ 𝜏 𝑣=1 πœ‹ 𝜏 𝑣=βˆ’1 < πœ‹ 𝜎 𝑣=1 πœ‹ 𝜎 𝑣=βˆ’1 , a contradiction.

8 Intrinsic randomness matters
What if we decided to discard π‘ˆ and β€œstart fresh” on every increment? 1 2 0.5 1 2 Pr 2 in step T=βˆ’1 =0.5 1 2 Pr 2 in step T=βˆ’2 = =0.5 Pr 2 β‰₯ βˆ—0.5=0.75

9 Time to coalescence Lemma: Let 𝑙 be the length of the longest totally ordered subset in Ξ© and π‘˜>0. Pr⁑(𝑇>π‘˜) ≀𝑙 𝑑 π‘˜ (Recall: 𝑑 π‘˜ = max π‘₯, π‘¦βˆˆΞ© 𝑃 π‘˜ π‘₯, β‹… βˆ’ 𝑃 π‘˜ 𝑦, β‹… 𝑇𝑉 ) Proof: Let 𝑋 0 π‘˜ and 𝑋 1 π‘˜ be the states in time π‘˜, beginning from 0 and 1 . Notice 𝑋 𝑠 π‘˜ ~ 𝑃 π‘˜ 𝑠, β‹… . Let β„Ž(π‘₯) be the maximal length of a monotone decreasing sequence beginning in π‘₯∈Ω. β„Ž 𝑋 1 π‘˜ βˆ’β„Ž 𝑋 0 π‘˜ β‰₯1 if 𝑋 0 π‘˜ β‰  𝑋 1 π‘˜ . Pr 𝑇 βˆ— >π‘˜ = Pr 𝑋 0 π‘˜ β‰  𝑋 1 π‘˜ = Pr 𝑋 0 π‘˜ = 𝑋 1 π‘˜ β‹…0+ Pr 𝑋 0 π‘˜ β‰  𝑋 1 π‘˜ β‹…1 ≀𝐸 β„Ž 𝑋 1 π‘˜ βˆ’β„Ž 𝑋 0 π‘˜ =𝐸 β„Ž 𝑋 1 π‘˜ βˆ’πΈ β„Ž 𝑋 0 π‘˜ = π‘₯∈Ω β„Ž π‘₯ 𝑃 π‘˜ 1 ,π‘₯ βˆ’ π‘₯∈Ω β„Ž π‘₯ 𝑃 π‘˜ 0 ,π‘₯ = π‘₯∈Ω β„Ž π‘₯ 𝑃 π‘˜ 1 ,π‘₯ βˆ’ 𝑃 π‘˜ 0 ,π‘₯ ≀ π‘₯∈Ω 𝑃 π‘˜ 1 ,π‘₯ β‰₯ 𝑃 π‘˜ 0 ,π‘₯ β„Ž π‘₯ 𝑃 π‘˜ 1 ,π‘₯ βˆ’ 𝑃 π‘˜ 0 ,π‘₯ ≀𝑙 𝑃 𝑑 1 , β‹… βˆ’ 𝑃 𝑑 0 , β‹… 𝑇𝑉 ≀𝑙 𝑑 π‘˜

10 Time to coalescence Theorem: Let 𝑙 be the length of the longest totally ordered subset in Ξ©. Pr⁑ 𝑇> 𝑇 π‘šπ‘–π‘₯ 1+ log 𝑙 ≀ 1 2 Proof: Reminders: 𝑑 𝑑 1 + 𝑑 2 ≀ 𝑑 𝑑 1 β‹… 𝑑 𝑑 𝑑 𝑑 ≀2𝑑(𝑑) 𝑑 𝑇 π‘šπ‘–π‘₯ ≀ 1 4 Pr 𝑇> 𝑇 π‘šπ‘–π‘₯ 1+ log 𝑙 ≀𝑙 𝑑 𝑇 π‘šπ‘–π‘₯ 1+ log 𝑙 ≀𝑙 𝑑 𝑇 π‘šπ‘–π‘₯ 1+ log 𝑙 ≀𝑙 2𝑑 𝑇 π‘šπ‘–π‘₯ log 𝑙 ≀ 𝑙 log 𝑙 ≀ 1 2

11 Time to coalescence Lemma: Let π‘˜ 1 , π‘˜ 2 βˆˆβ„•. Pr 𝑇> π‘˜ 1 + π‘˜ 2 ≀ Pr 𝑇> π‘˜ 1 β‹… Pr 𝑇> π‘˜ 2 Proof: Pr 𝑇 βˆ— > π‘˜ 1 + π‘˜ 2 = Pr 𝐹 βˆ’ π‘˜ 1 βˆ’ π‘˜ 2 0 is not constant ≀Pr⁑ 𝐹 βˆ’ π‘˜ 1 0 is not constant and 𝐹 βˆ’ π‘˜ 1 βˆ’ π‘˜ 2 βˆ’ π‘˜ 1 is not constant = Pr 𝐹 βˆ’ π‘˜ 1 0 is not constant β‹… Pr 𝐹 βˆ’ π‘˜ 1 βˆ’ π‘˜ 2 βˆ’ π‘˜ 1 is not constant =Pr 𝑇> π‘˜ 1 β‹…Pr 𝑇> π‘˜ 2

12 Time to coalescence Lemma: Let π‘˜>0. 𝐸 𝑇 ≀ π‘˜ 1βˆ’Pr⁑(𝑇>π‘˜) Proof: 𝐸 𝑇 = 𝑖=1 ∞ 𝑖⋅𝑝(𝑇=𝑖) = 𝑗=0 ∞ 𝑖=π‘˜π‘—+1 π‘˜ 𝑗+1 𝑖⋅𝑝 𝑇=𝑖 ≀ 𝑗=0 ∞ π‘˜β‹…π‘ 𝑇>π‘˜π‘— ≀ 𝑗=0 ∞ π‘˜β‹…π‘ 𝑇>π‘˜ 𝑗 ≀ π‘˜ 1βˆ’Pr⁑(𝑇>π‘˜)

13 Time to coalescence Theorem: 𝐸 𝑇 ≀2 𝑇 π‘šπ‘–π‘₯ (1+ log 𝑙 ) Proof: 𝐸 𝑇 ≀ 𝑇 π‘šπ‘–π‘₯ 1+ log 𝑙 Pr 𝑇≀ 𝑇 π‘šπ‘–π‘₯ 1+ log 𝑙 ≀ 𝑇 π‘šπ‘–π‘₯ 1+ log 𝑙 1βˆ’ 1 2 =2 𝑇 π‘šπ‘–π‘₯ 1+ log 𝑙


Download ppt "Seminar on Markov Chains and Mixing Times Elad Katz"

Similar presentations


Ads by Google