Download presentation
Presentation is loading. Please wait.
Published byMitchell Fisher Modified over 6 years ago
1
Seminar on Markov Chains and Mixing Times Elad Katz 11.1.17
Coupling from the Past Seminar on Markov Chains and Mixing Times Elad Katz
2
Monotone CFTP In the general setting, we have to keep track of |Ξ©| mappings, which is usually infeasible. Monotone setting: A partial order β€ such that xβ€π¦βπ π₯, π 0 β€π π¦, π 0 States 0 , 1 such that 0 β€π β€ 1 for every π βΞ©. Now we only need to keep track of 2 mappings. The operation respects the order
3
Monotone CFTP πβ1 do high β 1 low β 0 for π‘=βT to β1 do high βπ(high, π π‘ ) low βπ(low, π π‘ ) πβ2π until high = low return high Time & space complexity Always converges
4
Example Consider the state space of the possible tilings of 60Β° rhombuses inside a regular hexagon. Define a partial order: πβ€π when the cubes of π are a subset of the cubes of π. 1 Wish to sample uniformly β€ β€ β€ β€
5
Example Transitions: Uniformly select a site (vertex) Flip a coin (1) Heads: do nothing Tails: If possible, add / remove the cube there (2) Heads: If possible, add a cube there Tails: If possible, remove the cube there Same chain, but (1) will not work. 0.5
6
Example (2) Definition: A spin system consists of the following: Set π
0.5 πβ1 πβ1 1 7 1 7 Definition: A spin system consists of the following: Set π Ξ©= π:πβ{1,β1} Distribution π on Ξ© The system is attractive if the following holds: For every πβΞ© and π£,π€βπ, π π π£=1,π€=1 π π π£=1,π€=β1 β₯ π π π£=β1,π€=1 π π π£=β1,π€=β1 . Using Gibbs sampler, create a chain with stationary distribution π: Move from π to π π£=βπ(π£) w. p. 1 π β
π( π π£=βπ(π£) ) π π π£=1 +π( π π£=β1 ) . 5 14 5 14 πβ1 πββ1 πββ1 πβ1 0.2 0.2 1 3 1 3 πββ1 πββ1 1 6 1 6 0.1
7
Example (2) Use the following randomization: Uniformly select π£βπ, πβ 0, 1 . Move from π to π π£=1 if π< π( π π£=1 ) π π π£=1 +π( π π£=β1 ) , otherwise switch to π π£=β1 . Claim: This randomization respects the following order: πβ€π when π π£ β€π π£ for all π£βπ. Proof: Let πβ€π, and let π£βπ be the selected spin. Attractiveness implies π π π£=1 π π π£=β1 β₯ π π π£=1 π π π£=β1 . The order can only be violated if the transitions are πβ π π£=1 and πβ π π£=β1 , which implies π( π π£=1 ) π π π£=1 +π( π π£=β1 ) β€π< π π π£=1 π π π£=1 +π π π£=β1 β π π π£=1 π π π£=β1 < π π π£=1 π π π£=β1 , a contradiction.
8
Intrinsic randomness matters
What if we decided to discard π and βstart freshβ on every increment? 1 2 0.5 1 2 Pr 2 in step T=β1 =0.5 1 2 Pr 2 in step T=β2 = =0.5 Pr 2 β₯ β0.5=0.75
9
Time to coalescence Lemma: Let π be the length of the longest totally ordered subset in Ξ© and π>0. Prβ‘(π>π) β€π π π (Recall: π π = max π₯, π¦βΞ© π π π₯, β
β π π π¦, β
ππ ) Proof: Let π 0 π and π 1 π be the states in time π, beginning from 0 and 1 . Notice π π π ~ π π π , β
. Let β(π₯) be the maximal length of a monotone decreasing sequence beginning in π₯βΞ©. β π 1 π ββ π 0 π β₯1 if π 0 π β π 1 π . Pr π β >π = Pr π 0 π β π 1 π = Pr π 0 π = π 1 π β
0+ Pr π 0 π β π 1 π β
1 β€πΈ β π 1 π ββ π 0 π =πΈ β π 1 π βπΈ β π 0 π = π₯βΞ© β π₯ π π 1 ,π₯ β π₯βΞ© β π₯ π π 0 ,π₯ = π₯βΞ© β π₯ π π 1 ,π₯ β π π 0 ,π₯ β€ π₯βΞ© π π 1 ,π₯ β₯ π π 0 ,π₯ β π₯ π π 1 ,π₯ β π π 0 ,π₯ β€π π π‘ 1 , β
β π π‘ 0 , β
ππ β€π π π
10
Time to coalescence Theorem: Let π be the length of the longest totally ordered subset in Ξ©. Prβ‘ π> π πππ₯ 1+ log π β€ 1 2 Proof: Reminders: π π‘ 1 + π‘ 2 β€ π π‘ 1 β
π π‘ π π‘ β€2π(π‘) π π πππ₯ β€ 1 4 Pr π> π πππ₯ 1+ log π β€π π π πππ₯ 1+ log π β€π π π πππ₯ 1+ log π β€π 2π π πππ₯ log π β€ π log π β€ 1 2
11
Time to coalescence Lemma: Let π 1 , π 2 ββ. Pr π> π 1 + π 2 β€ Pr π> π 1 β
Pr π> π 2 Proof: Pr π β > π 1 + π 2 = Pr πΉ β π 1 β π 2 0 is not constant β€Prβ‘ πΉ β π 1 0 is not constant and πΉ β π 1 β π 2 β π 1 is not constant = Pr πΉ β π 1 0 is not constant β
Pr πΉ β π 1 β π 2 β π 1 is not constant =Pr π> π 1 β
Pr π> π 2
12
Time to coalescence Lemma: Let π>0. πΈ π β€ π 1βPrβ‘(π>π) Proof: πΈ π = π=1 β πβ
π(π=π) = π=0 β π=ππ+1 π π+1 πβ
π π=π β€ π=0 β πβ
π π>ππ β€ π=0 β πβ
π π>π π β€ π 1βPrβ‘(π>π)
13
Time to coalescence Theorem: πΈ π β€2 π πππ₯ (1+ log π ) Proof: πΈ π β€ π πππ₯ 1+ log π Pr πβ€ π πππ₯ 1+ log π β€ π πππ₯ 1+ log π 1β 1 2 =2 π πππ₯ 1+ log π
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.