Download presentation
Presentation is loading. Please wait.
1
Quantum Correlations in Nuclear Spin Ensembles
T. S. Mahesh Indian Institute of Science Education and Research, Pune
2
Contents: Nuclear Spin-Ensembles
Nuclear Magnetic Resonance (NMR) and Quantum Information Quantumness debate Leggett-Garg inequality -- NMR evaluation Quantum correlations -- NMR evalutions Summary
3
Nuclear Magnetism Many atomic nuclei have ‘spin angular momentum’ and ‘magnetic moment’ ħgB0 B0 |0 |1 |0 + b |1 Coherent Superposition
4
Nuclear Magnetism p1 p1 p0 p0 Sample 1015 molecules |1 = 1 B0 |0
~ 105 at 300 K, 11.7 T E kT = = ½ 1 + z
5
Nuclear Magnetic Resonance (NMR)
|1 Electromagnetic energy (2pn = gB0) |1 90 degree pulse B0 |0 |0 = ½ 1 + z = ½ 1 + x Larmor precession ~
6
Nuclear Magnetic Resonance (NMR)
Spectrometer Sample RF coil Pulse/Detect H0 H1cos(wt) ~ Superconducting coil
7
NMR Spectrometer, IISER-Pune
8
Addressability: Different Larmor freqencies – i) Heteronuclear
ii) Chemical Shift Chemical Shift: O H C H wH OH wH CH > w
9
Spin-Spin interactions:
H J-coupling 1-102 Hz C H Dipolar coupling (liquid crystals, solids) Hz
10
NMR spin system 1 3-qubits : Eg. 2,3-dibromopropionic acid 2 time
Signal x 3 Fourier Transform 2 3 1 Hz
11
Benchmarking 12-qubits A 8 A’ 2 11 1
3 4 5 6 7 9 8 10 11 Benchmarking circuit – Prepares entangled states AA’ 1 2 3 4 5 6 7 8 9 10 11 Qubits Time PRL, 2006
12
NMR and Quantum Information
1. Quantum Logic Gates (1997) 2. Deutsch-Jozsa Algorithm (1998) 3. Grover’s Algorithm (1998) 4. Quantum Error Correction (1998) 5. Quantum Simulation (1999) .
13
Is there a quantum state?
14
List goes on … 5. Quantum Fourier Transform (2001)
6. Order-finding, Quantum Counting (2001) 7. Teleportation (2002) 8. Quantum Games (2002) .
15
Factoring 15 by NMR using Quantum Algorithm
16
How to distinguish quantum and classical behavior?
NMR states - Quantum or Classical ? How to distinguish quantum and classical behavior? Leggett-Garg Inequality Quantum correlations
17
Leggett-Garg inequality (LGI)
18
Sir Anthony James Leggett
Leggett-Garg inequality (1985) Sir Anthony James Leggett Uni. of Illinois at UC Prof. Anupam Garg Northwestern University, Chicago A. J. Leggett and A. Garg, PRL 54, 857 (1985)
19
Leggett-Garg inequality (1985)
Consider a system with a dichotomic quantity Q(t) Dichotomic : Q(t) = 1 at any given time time Q1 Q2 Q3 t2 t3 . . . t1 A. J. Leggett and A. Garg, PRL 54, 857 (1985) PhD Thesis, Johannes Kofler, 2004
20
Two-Time Correlation Coefficient (TTCC) time Q1 t = 0 Q2 Q3 t . . .
Temporal correlation: Cij = Qi Qj = Qi(r) Qj(r) N 1 r = 1 = pij+(+1) + pij(1) r over an ensemble Ensemble Time ensemble (sequential) Spatial ensemble (parallel) 1 Cij 1 Cij = 1 Perfectly correlated Cij = 0 No correlation Cij =1 Perfectly anti-correlated
21
LG string with 3 measurements
time Q1 t = 0 Q2 Q3 t 2t K3 = C12 + C23 C13 K3 = Q1Q2 + Q2Q3 Q1Q3 Consider: Q1Q2 + (Q2 Q1)Q3 If Q1 Q2 : = 1 Q1 Q2 : (2) = 1 or 3 Q1Q2 + Q2Q3 Q1Q3 = 1 or 3 3 < Q1Q2 + Q2Q3 Q1Q3 < 1 K3 time Macrorealism (classical) 3 K3 1 Leggett-Garg Inequality (LGI)
22
TTCC of a spin ½ particle
Consider : A spin ½ particle precessing about z Hamiltonian : H = ½ z Initial State : highly mixed state : 0 = ½ 1 + x ( ~ 10-5) Dichotomic observable: x eigenvalues 1 Time Q1 t = 0 Q2 Q3 t 2t C12 = x(0)x(t) = x e-iHt x eiHt = x [xcos(t) + ysin(t)] C12 = cos(t) Similarly, C23 = cos(t) and C13 = cos(2t)
23
Quantum States Violate LGI: K3 with Spin ½
time Q1 t = 0 Q2 Q3 t 2t K3 = C12 + C23 C13 = 2cos(t) cos(2t) No violation ! K3 t 2 3 Macrorealism (classical) Quantum !! 4 (/3,1.5) Maxima cos(t) =1/2
24
LG string with 4 measurements
time Q1 t = 0 Q2 Q3 t 2t 3t Q4 K4 = C12 + C23 + C34 C or, K4 = Q1Q2 + Q2Q3 + Q3Q4 Q1Q4 Macrorealism (classical) K4 time Consider: Q1(Q2 Q4) + Q3(Q2 + Q4) If Q2 Q4 : (2) = 2 Q2 Q4 : (2) = 2 Q1Q2 + Q2Q3 + Q3Q4 Q1Q = 2 2 K4 2 Leggett-Garg Inequality (LGI)
25
Quantum States Violate LGI: K4 with Spin ½
time Q1 t = 0 Q2 Q3 t 2t 3t Q4 K4 = C12 + C23 + C34 C14 = 3cos(t) cos(3t) K4 Macrorealism (classical) Quantum !! t 2 3 4 (/4,22) (3/4,22) Extrema cos(2t) =0
26
Evaluating K3 K3 = C12 + C23 C13 Hamiltonian : H = ½ z EXPT - 1
time ENSEMBLE x(0)x(t) = C12 x(t)x(2t) = C23 x(0)x(2t) = C13 0 EXPT - 2 ENSEMBLE 0 EXPT - 3 ENSEMBLE 0
27
Evaluating K4 K4 = C12 + C23 + C34 C14 t = 0 t 2t time 3t ENSEMBLE
x↗ time 3t ENSEMBLE x(0)x(t) = C12 x(t)x(2t) = C23 x(0)x(3t) = C14 x(2t)x(3t) = C34 Joint Expectation Values Hamiltonian : H = ½ z EXPT - 1 0 EXPT - 2 0 0 EXPT - 3 EXPT - 4 0
28
Moussa Protocol Joint Expectation Value AB Target qubit (T)
Dichotomic observables Target qubit (T) Probe qubit (P) A B x↗ |+ AB O. Moussa et al, PRL,104, (2010)
29
Sample 13CHCl3 (in DMSO) Target: 13C Probe: 1H
Resonance Offset: Hz Hz T1 (IR) s s T2 (CPMG) s s Ensemble of ~1018 molecules
30
Experiment – pulse sequence
1H 13C 0 = Ax Aref Ax(t)+i Ay(t) Ax(t) = cos(2tij) Ay(t) = sin(2tij) Ax(t) x(t) = V. Athalye, S. S. Roy, and T. S. Mahesh, PRL 107, (2011).
31
Experiment – Evaluating K3
time Q1 t = 0 Q2 Q3 t 2t time Q1 t = 0 Q2 Q3 t 2t t K3 = C12 + C23 C13 = 2cos(t) cos(2t) Error estimate: 0.05 V. Athalye, S. S. Roy, and T. S. Mahesh, PRL 107, (2011). ( = 2100)
32
Experiment – Evaluating K3
time Q1 t = 0 Q2 Q3 t 2t 50 100 150 200 250 300 t (ms) LGI violated !! (Quantum) LGI satisfied (Macrorealistic) t ~ 165 ms Decay constant of K3 = 288 ms V. Athalye, S. S. Roy, and T. S. Mahesh, PRL 107, (2011).
33
Experiment – Evaluating K4
time Q1 t = 0 Q2 Q3 t 2t 3t Q4 K4 = C12 + C23 + C34 C14 = 3cos(t) cos(3t) Error estimate: 0.05 Decay constant of K4 = 324 ms V. Athalye, S. S. Roy, and T. S. Mahesh, PRL 107, (2011). ( = 2100)
34
Quantum Correlations Pinto et al, Phys. Rev. A 81, 062118 (2010)
Pinto et al, arXiv: v1 [quant-ph] Hemant et al, (manuscript in preparation)
35
Information content in a two-state system
V Equal probability of the two states Maximum Entropy !! Maximum information !! P(0) < P(1) P(0) ~ P(1) P(0) > P(1) time V time V time
36
Information content and Probability
Shannon Entropy : eg. H(X) = p log2p (1 p) log2(1p) H(X) p
37
Information content in a Quantum State
Von Neumann Entropy : Eigenvalues For example: Werner State H(W) Eigenvalues: (1)/4 , (1)/4 , (1)/4 , (13)/4 Von Neumann Entropy: H(W) = 2 – ¼ log2(1)3(13) – (3/4) log2(13)/(1)
38
Conditional Entropy Conditional entropy
39
Mutual Entropy Mutual entropy Classically Equivalent No measurement
Directly from VN entropy ! Requires measurement (of A) Depends on measurement basis
40
Captures non-classical correlations !!
Discord Captures non-classical correlations !! Classical State or Zero-Discord States D(B|A) = 0: States of the form are classical w.r.t. A projection operators Measurement of A does not change the correlations of A with B Ollivier and Zurek, PRL 88, (2002)
41
Distance between the given state and the nearest classical state
Geometric Discord trace[( )2] Distance between the given state and the nearest classical state Dakic et al, PRL 105, (2010) S Luo et al, PRA 82, (2010) Rana et al, PRA 85, (2012) Hassan et al, arXiv: v3.
42
Discord of Werner state
43
NMR Werner state Werner State 8 105
44
With Dynamical Decoupling
45
Long-lived Werner-State
46
Rotational Symmetry F = 0.8 F = 0.91 W F = 0.93 F = 0.99 F = 0.82
47
Summary Spin ½ nucleus prepared in a quantum superposition violates LGI, thus confirming the quantum behavior. However, the gradual decay of coherence amplitudes leads ultimately to the satisfaction of LGI, thus indicating the emergence of macro-realistic behavior. Two-qubit NMR systems can have non-zero discord, and so exhibit quantum correlations.
48
Acknowledgments Dr. Vikram Athalye, Cummins College, Pune
Soumya Singha Roy, IISER, Pune Hemant Katiyar IISER, Pune Prof. Anthony J. Leggett, University of Illinois, UC Prof. Anil Kumar, IISc, Bangalore DST project Prof. Apoorva Patel IISc, Bangalore
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.