Download presentation
Presentation is loading. Please wait.
Published byElla Jefferson Modified over 6 years ago
1
Buoyancy Buoyant force vs. Weight Apparent weight
Apparent weight β Example 10-7 Measuring Density β Example 10-8 Partially submerged objects Partially submerged Iceberg β Example Hydrometer β Example 10-9 Helium Balloon β Example 10-10
2
Basic Buoyancy Force on top surface πΉ 1 = π 1 π΄=ππ β 1 π΄
πΉ 1 = π 1 π΄=ππ β 1 π΄ Force on bottom surface πΉ 2 = π 2 π΄=ππ β 2 π΄ Force difference ( πΉ 2 β πΉ 1 )= (π 2 β π 1 )π΄ =ππ (β 2 β β 1 ) π΄ Since h2 > h1 upward Side forces cancel Buoyant force πΉ 2 β πΉ 1 = πΉ π΅ = ππ (β 2 β β 1 ) π΄ = ππ π πππ ππ = π πππ ππ π
3
Archimedes' Principal Buoyant force up: πΉ π΅ =π π πππ π π= π πππ π π
Gravity force down: πΉ π =ππ Total (+ up) πΉ= πΉ π΅ β πΉ π = π πππ π πβππ Note: if volume filled with same fluid β Total force neutral
4
Example 1 β Apparent weight
Step 1 β empty statue volume of water πΉ π΅π’ππ¦ = π π€ππ‘ππ π π€ππ‘ππ π =(1000 ππ π 3 ) (3β 10 β2 π 3 ) (9.8 π π 2 ) =294 π Step 2 β refill statue volume with statue πΉ π π‘ππ‘π’π = π π π‘ππ‘π’π π=686 π Step 3 β apparent force down πΉ ππππ‘ = πΉ π π‘ππ‘π’π β πΉ π΅π’ππ¦ =392 π
5
Example 2 - Measure density
Apparent vs. real weight. πΉ ππππ‘ = πΉ π β πΉ π΅ 13.4 ππ π=14.7 ππ π β π πππ π π Mass of water displaced. π πππ π =14.7 ππ β13.4 ππ =1.3 ππ Volume of water displaced. π= π π = 1.3 ππ ππ π 3 = π ππ π€ππ‘ππ =1.3 πΏ= π 3
6
Example 2 β Density (cont)
Volume of crown equals volume of water displaced. π ππππ€π = π πππ π = π 3 Density of crown π= π ππππ€π π ππππ€π π= 14.7 ππ π 3 =11,308 ππ π 3
7
Partially submerged objects
Density less than water 1200 kg log with volume 2 m3 Ο = 600 kg/m3 (a) Totally submerged β buoyant force exceeds weight (b) Partially submerged β buoyant force equals weight
8
Partially submerged objects (cont)
Buoyant force in fluid (partial volume) πΉ π΅π’ππ¦ = π π€ππ‘ππ π Weight of object (total volume) πΉ π€πππβπ‘ = π π€πππ π Equating πΉ π΅π’ππ¦ = πΉ π€πππβπ‘ π π€ππ‘ππ π π€ππ‘ππ π= π π€πππ π π€πππ π π π€ππ‘ππ π π€πππ = π π€πππ π π€ππ‘ππ
9
Example 3 - Iceberg The old iceberg problem
π π πππ€ππ‘ππ π πππ = π πππ π π πππ€ππ‘ππ Table 10-1 π π πππ€ππ‘ππ =1025 ππ/ π 3 π πππ =917 ππ/ π 3 Equating π seawater π πππ = 917ππ/ π ππ/ π 3 =0.89 only 0.11 above water (Thatβs just the tip of the iceberg!)
10
Example 4 β Hydrometer Winemakerβs tool
Effective density of hydrometer π πππ = 45 π 25 ππ 2 ππ 2 =0.9 π ππ 3 OK to use g/cm3, since conversion will cancel
11
Example 4 β Hydrometer Submerged volume ratio
π π€ππ‘ππ π π‘πππ = π π‘πππ π π€ππ‘ππ π π€ππ‘ππ π π‘πππ = 0.9 π ππ π ππ 3 =0.9 Hydrometer should be 0.9 submerged in water Mark at 0.9 * 25 or 22.5 cm
12
Example 5 β Balloon Buoyancy in a βpoolβ of air
Step 1 β empty balloon volume of air πΉ π΅π’ππ¦ = π πππ π πππ π =(1.29 ππ π 3 )ππ Step 2 β fill balloon with helium add load weight πΉ ππππβπ‘ = π π»π π π»π π + π π π =( ππ π 3 )ππ +180 ππ π
13
Example 6 β Balloon (cont)
Buoyancy in a βpoolβ of air Equating up and down forces (1.29 ππ π 3 )ππ =( ππ π 3 )ππ +180 ππ π Solving for V π= 180 ππ ππ π 3 β ππ π 3 π=160 π 3
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.