Download presentation
Presentation is loading. Please wait.
Published byHartanti Hadiman Modified over 6 years ago
1
STRIP PLOT /split block DESIGN AND MULTILOCATIONS
2
SPLIT BLOCK DESIGN (STRIP PLOT)
Utamanya digunakan dalam bidang pertanian. 2 faktor, A dan B, diacak pada main plot. A diacak dengan mendatar B diacak dengan vertikal Misalnya A: penggenangan B: penyemprotan herbisida A & B diconfoundedkan a1 a2 a4 a3 a0 b3 b2 b0 b1 1/14/2019
3
Model Linear Tabel Anova SR df SS EMS (fixed treat) Blok A Error 1 B
(r-1)(a-1) b-1 (r-1)(b-1) (a-1)(b-1) (r-1)(a-1)(b-1) SSR SSA SSE1 SSB SSE2 SSAB SSE3 Total rab-1 SStot 1/14/2019
4
Penghitungan semua JK (SS) seperti pada simple split plot
Penghitungan semua JK (SS) seperti pada simple split plot. Kecuali untuk errornya. 1/14/2019
5
Konsentrasi Rep Genangan 1 2 3 4 5 6 I T S R 10,3 9,8 9,0 9,7 10,1 9,6
11,2 11,0 10,8 10,4 10,5 10,6 9,9 9,5 184,1 II 11,8 10,7 11,6 10,9 12,1 11,9 12,3 11,7 9,2 200,3 10,2 9,3 9,4 185,3 91,1 92,3 102,7 97,1 96,2 90,3 569,7 1/14/2019
7
ANOVA SR df SS MS Fhit Ftab Rep. Kon. E1 Gen. E2 K*G E3 2 5 10 4 20
1/14/2019 SR df SS MS Fhit Ftab Rep. Kon. E1 Gen. E2 K*G E3 2 5 10 4 20 9,05 12,19 2,81 3,30 0,90 4,45 3,44 4,52 2,44 0,28 1,15 0,23 0,44 0,17 8,71* 5ns 2,85ns 6,43 9,6 4,37 Total 52 36,17 PROC GLM; CLASS BLOCKS TREATS CROSS; MODEL WHATEVER = BLOCKS TREATS BLOCKS*TREATS CROSS CROSS*BLOCKS CROSS*TREATS; TEST H=BLOCKS TREATS E=BLOCKS*TREATS; TEST H=CROSS E=CROSS*BLOCKS; RUN;
8
The number of blocks is the number of replications.
RCB repeated in time 1/14/2019 Field marks: Multiple measurements of the same experimental subjects are made in time. Treatments are assigned at random within blocks of adjacent subjects, each treatment once per block. The number of blocks is the number of replications.
9
1/14/2019 this example.
10
Layout 1/14/2019 First Block I A B C D E F Block II F A E B D C Block III C B F A D E Second Block I A B C D E F Third Block I A B C D E F
11
Anova RCBD Repeated time
Source of variation Degrees of freedoma Sums of squares (SSQ) Mean square (MS) F Blocks (B) b-1 SSQB SSQB/(b-1) MSB/MSEm Treatment (Tr) t-1 SSQTr1 SSQTr/(t-1) MSTr/MSEm Error-main (Em) (b-1)*(t-1) SSQEm SSQEm/((b-1)*(t-1)) Time (Ti) (s-1) SSQTi SSQTi/(s-1) MSTi/MSE Time X Blocks (TxB) (s-1)*(b-1) SSQTxB SSQTxB/((s-1)*(b-1)) MSTxB/MSE Time X Treatments (TxT) (s-1)*(t-1) SSQTxT SSQTxT/((s-1)*(t-1)) MSTxT/MSE Error (E) (s-1)*(t-1)*(b-1) SSQE SSQE/((s-1)*(t-1)*(b-1)) Total (Tot) f*s*b-1 SSQTot awhere t=number of treatments, s=number of times measurements are taken, and b=number of blocks or replications. 1/14/2019
12
Sample SAS GLM statements:
1/14/2019 PROC GLM; CLASS BLOCKS TREAT; MODEL TIME1 TIME2 TIME3 = BLOCKS TREAT; REPEATED TIME /PRINTE; RUN;
13
RCB repeated at more than one location
1/14/2019 Field marks: Blocks are laid out at more than one location. Treatments are assigned at random to those blocks as below. Treatments are assigned at random within blocks of adjacent subjects, each treatment once per block. The number of blocks is the number of replications. Any treatment can be adjacent to any other treatment, but not to the same treatment within the block.
14
Lay out multilocations
1/14/2019
15
Anova multilocations Source of variation Degrees of freedoma
Sums of squares (SSQ) Mean square (MS) F Locations (L) l-1 SSQL SSQL/(l-1) MSL/MSEl Error for Locations (El) l*(b-1) SSQEl SSQEl/(l*(b-1)) Treatments (Tr) t-1 SSQTr SSQTr/(t-1) MSTr/MSE Treatments X Locations (TxL) (t-1)*(l-1) SSQTxL SSQTxL/((t-1)*(l-1)) MSTxL/MSE Error (E) l*(t-1)*(b-1) SSQE SSQE/(l*(t-1)*(b-1)) Total (Tot) l*t*b-1 SSQTot awhere l=number of locations, t=number of treatments and b=number of blocks or replications. 1/14/2019
16
SAMPLE SAS GLM STATEMENTS:
1/14/2019 PROC GLM; CLASS LOCS BLOCKS TREATS; MODEL WHATEVER = LOCS LOCS(BLOCKS) TREATS TREATS*LOCS ; TEST H = LOCS E = LOCS(BLOCKS); RUN;
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.