Presentation is loading. Please wait.

Presentation is loading. Please wait.

Parametric Line equations

Similar presentations


Presentation on theme: "Parametric Line equations"— Presentation transcript:

1 Parametric Line equations
(x2,y2) For a line from (x1,y1) to (x2,y2) x = x1 + (x2 – x1)*u = x1(1-u) + x2u y = y1(1-u) + y2u Where 0 ≤ u ≤1 (x1,y1) CS-321 Dr. Mark L. Hornick

2 Vector form of Parametric equation
p2 =(x2,y2) x = x1(1-u) + x2u y = y1(1-u) + y2u Or P(u) = p1(1-u) + p2u Where P = {x y} p1 =(x1,y1) CS-321 Dr. Mark L. Hornick

3 A Bézier Curve (of order 2)
CS-321 1/15/2019 A Bézier Curve (of order 2) P1 P0 P2 CS-321 Dr. Mark L. Hornick Dr. Mark L. Hornick

4 Bézier Curves (or Bezier Splines)
CS-321 1/15/2019 Bézier Curves (or Bezier Splines) Most common curves in C.G. Uses control points p1, p2, … Determine boundaries of curve shape Curve does not pass through them Except at beginning and end Bezier Polynomial function Degree = # control points – 1 Continuity through all derivatives CS-321 Dr. Mark L. Hornick Dr. Mark L. Hornick

5 General form of Bézier Curve
CS-321 1/15/2019 General form of Bézier Curve n+1 control points: 0..n; u = 0 at p0, u=1 at pn Bernstein Polynomials exhibit the property that, for any value of u: CS-321 Dr. Mark L. Hornick Dr. Mark L. Hornick

6 Binomial Coefficients
CS-321 1/15/2019 Binomial Coefficients k n 1 1 1 CS-321 Dr. Mark L. Hornick Dr. Mark L. Hornick

7 Bézier Curve: n = 1 P1 P0 CS-321 1/15/2019 Dr. Mark L. Hornick

8 Bézier Curve: n = 2 P1 P0 P2 CS-321 1/15/2019 Dr. Mark L. Hornick

9 Bernstein Polynomial: n = 2
CS-321 1/15/2019 Bernstein Polynomial: n = 2 CS-321 Dr. Mark L. Hornick Dr. Mark L. Hornick

10 Bernstein Polynomial: n = 3
CS-321 1/15/2019 Bernstein Polynomial: n = 3 0.2 0.4 0.6 0.8 1 0.5 1.5 u P0 P1 P2 P3 CS-321 Dr. Mark L. Hornick Dr. Mark L. Hornick

11 Bézier Summary Curve shape Smooth curve
CS-321 1/15/2019 Bézier Summary Curve shape Influenced by all control points Change one point – whole curve changes shape Influence increased near each point Contained in convex hull of control points Smooth curve Polynomial degree = #points – 1 Parametric continuity through all derivatives Does not pass through all points CS-321 Dr. Mark L. Hornick Dr. Mark L. Hornick

12 Curved Lines and Surfaces
CS-321 1/15/2019 Curved Lines and Surfaces Problem: How to model arbitrarily curved surfaces Boundary representation approaches approximate with linear/polygon mesh …or with curved surface patches CS-321 Dr. Mark L. Hornick Dr. Mark L. Hornick

13 Spline Surface Two sets of orthogonal spline curves CS-321 1/15/2019
CS-321 Dr. Mark L. Hornick Dr. Mark L. Hornick


Download ppt "Parametric Line equations"

Similar presentations


Ads by Google