Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 10 – Estimation and Testing for Population Proportions

Similar presentations


Presentation on theme: "Chapter 10 – Estimation and Testing for Population Proportions"— Presentation transcript:

1 Chapter 10 – Estimation and Testing for Population Proportions
Introduction to Business Statistics, 6e Kvanli, Pavur, Keeling Chapter 10 – Estimation and Testing for Population Proportions Slides prepared by Jeff Heyl, Lincoln University ©2003 South-Western/Thomson Learning™

2 Point Estimate for a Population Proportion
where n = sample size and x = the observed number of successes in the sample p = estimate of p = proportion of sample having a specified attribute = ^ x n

3 Confidence Interval for a Population Proportion
Table A.8 provides 90% and 95% confidence interval values for small samples From A.8 a 95 % confidence interval pL to pU = .519 to .957 For n = 15 and x = 12 12 15 p = ^ Example 10.1

4 Confidence Interval for a Population Proportion
p(1 - p) n - 1 ^ sp = Estimated standard error (1-) 100% confidence interval for large samples p - Z/ to p + Z/2 ^ p(1 - p) n - 1

5 Choosing the Sample Size
With 95% confidence E = 1.96 p(1 - p) n - 1 ^ With E = .02 E = .02 = 1.96 (.0867)(.9133) n - 1 n = 761.5 n = Z/2p(1 - p) E2 ^ 2

6 Curve of Values | .5 1 p ^ p(1 - p) .25 – Figure 10.1

7 Hypothesis Testing Using a Small Sample
Ho: p = po Ha: p ≠ po Two-Tailed Test Obtain (1- ) • 100% confidence interval Reject Ho if po does not lie between pL and pU Fail to reject Ho if pL ≤ po ≤ pU

8 Hypothesis Testing Using a Small Sample
Ho: p ≤ po Ha: p > po One-Tailed Test Obtain (1- 2) • 100% confidence interval Reject Ho if po < pL Fail to reject Ho if po ≥ pL

9 Hypothesis Testing Using a Small Sample
Ho: p ≥ po Ha: p < po One-Tailed Test Obtain (1- 2) • 100% confidence interval Reject Ho if po > pL Fail to reject Ho if po ≤ pU

10 Hypothesis Testing Using a Large Sample
Ho: p = po Ha: p ≠ po reject Ho if |Z| > Z/2 Two-Tailed Test where Z = p - po po(1 - po) n ^

11 Hypothesis Testing Using a Large Sample
Ho: p ≤ po Ha: p > po reject Ho if Z > Z One-Tailed Test Ho: p ≥ po Ha: p < po reject Ho if Z < -Z Z = (point estimate) - (hypothesized value) (stanard deviation of point estimator)

12 Z Curve Showing p-Value
p-value = area = = .008 Z Figure 10.2

13 Z Curve Showing p-Value
p-value = 2(area) = 2( ) = 2(.0018) = .0036 Z Figure 10.3

14 Excel Z Test Figure 10.4

15 Comparing Two Population Proportions (Large Independent Samples)
Standard error sp -p = 1 2 ^ p1(1 - p1) n1 - 1 p2(1 - p2) n2 - 1 Confidence interval (p1 - p2) - Z/2 ^ p1(1 - p1) n1 - 1 p2(1 - p2) n2 - 1 + to (p1 - p2) + Z/2

16 Sample Size -Two Populations
where E = Z/ p1(1 - p1) n1 - 1 ^ p2(1 - p2) n2 - 1 n1 = Z/2(A + B) E2 2 n2 = Z/2(C + B) A = p1(1 - p1) B = p1p2(1 - p1)(1 - p2) C = p2(1 - p2)

17 Hypothesis Test for Population Proportion
Two-Tailed Test Ho: p1 = p2 Ha: p1 ≠ p2 reject Ho if |Z| > Z/2 For test statistic Z = p1(1 - p1) n1 - 1 ^ p2(1 - p2) n2 - 1 + p1 - p2

18 Hypothesis Test for Population Proportion
One-Tailed Test Ho: p1 ≤ p2 Ha: p1 > p2 reject Ho if |Z| > Z Ho: p1 ≥ p2 Ha: p1 < p2 reject Ho if |Z| < -Z For test statistic Z = p1(1 - p1) n1 - 1 ^ p2(1 - p2) n2 - 1 + p1 - p2

19 Z Curve Showing p-Value
p-value = 2(area) = 2( ) = .4966 Z Figure 10.5

20 Z Curve Showing p-Value
p-value = area = = .0005 Z Figure 10.6

21 Excel Solution - Z Test Figure 10.6


Download ppt "Chapter 10 – Estimation and Testing for Population Proportions"

Similar presentations


Ads by Google