Presentation is loading. Please wait.

Presentation is loading. Please wait.

AVL Trees CSE 373 Data Structures.

Similar presentations


Presentation on theme: "AVL Trees CSE 373 Data Structures."— Presentation transcript:

1 AVL Trees CSE 373 Data Structures

2 Binary Search Tree - Best Time
All BST operations are O(d), where d is tree depth minimum d is for a binary tree with N nodes What is the best case tree? What is the worst case tree? So, best case running time of BST operations is O(log N) 1/15/2019 CSE AU AVL Trees

3 Binary Search Tree - Worst Time
Worst case running time is O(N) What happens when you Insert elements in ascending order? Insert: 2, 4, 6, 8, 10, 12 into an empty BST Problem: Lack of “balance”: compare depths of left and right subtree Unbalanced degenerate tree 1/15/2019 CSE AU AVL Trees

4 Balanced and unbalanced BST
1 4 2 2 5 3 1 3 4 4 Is this “balanced”? 5 2 6 6 1 3 5 7 7 1/15/2019 CSE AU AVL Trees

5 Approaches to balancing trees
Don't balance May end up with some nodes very deep Strict balance The tree must always be balanced perfectly Pretty good balance Only allow a little out of balance Adjust on access Self-adjusting 1/15/2019 CSE AU AVL Trees

6 Balancing Binary Search Trees
Many algorithms exist for keeping binary search trees balanced Adelson-Velskii and Landis (AVL) trees (height-balanced trees) Splay trees and other self-adjusting trees B-trees and other multiway search trees 1/15/2019 CSE AU AVL Trees

7 Perfect Balance Want a complete tree after every operation
tree is full except possibly in the lower right This is expensive For example, insert 2 in the tree on the left and then rebuild as a complete tree 6 5 Insert 2 & complete tree 4 9 2 8 1 5 8 1 4 6 9 1/15/2019 CSE AU AVL Trees

8 AVL - Good but not Perfect Balance
AVL trees are height-balanced binary search trees Balance factor of a node height(left subtree) - height(right subtree) An AVL tree has balance factor calculated at every node For every node, heights of left and right subtree can differ by no more than 1 Store current heights in each node 1/15/2019 CSE AU AVL Trees

9 Height of an AVL Tree N(h) = minimum number of nodes in an AVL tree of height h. Basis N(0) = 1, N(1) = 2 Induction N(h) = N(h-1) + N(h-2) + 1 Solution (Fibonacci) N(h) > h (  1.62) h h-2 h-1 1/15/2019 CSE AU AVL Trees

10 Height of an AVL Tree N(h) > h (  1.62)
Suppose we have n nodes in an AVL tree of height h. n > N(h) (because N(h) was the minimum) n > h hence log n > h (relatively well balanced tree!!) h < 1.44 log2n (i.e., O(height) takes O(logn)) 1/15/2019 CSE AU AVL Trees

11 Node Heights 6 6 4 9 4 9 1 5 1 5 8 Tree A (AVL) Tree B (AVL)
height=3 balance factor=2-1=1 3 6 6 2 1 2 2 4 9 4 9 1 1 1 1 1 1 5 1 5 8 1/15/2019 CSE AU AVL Trees

12 Worst-case AVL Trees 4 nodes: h = 3 vs 3 7 nodes: h = 4 vs 3
1/15/2019 CSE AU AVL Trees

13 Node Heights after Insert 7
Tree A (AVL) Tree B (not AVL) balance factor 2-0 = 2 3 4 6 6 2 2 2 3 4 9 4 9 1 1 1 1 1 2 1 5 7 1 5 8 1 7 1/15/2019 CSE AU AVL Trees

14 Insert and Rotation in AVL Trees
Insert operation may cause balance factor to become 2 or –2 for some node only nodes on the path from insertion point to root node have possibly changed in height So after the Insert, go back up to the root node by node, updating heights If a new balance factor (the difference hleft-hright) is 2 or –2, adjust tree by rotation around the node 1/15/2019 CSE AU AVL Trees

15 Single Rotation in an AVL Tree
3 3 6 6 2 3 2 2 4 9 4 8 1 1 1 2 1 1 1 1 5 8 1 5 7 9 1 7 1/15/2019 CSE AU AVL Trees

16 Insertions in AVL Trees
Let the node that needs rebalancing be . There are 4 cases: Outside Cases (require single rotation) : 1. Insertion into left subtree of left child of . 2. Insertion into right subtree of right child of . Inside Cases (require double rotation) : 3. Insertion into right subtree of left child of . 4. Insertion into left subtree of right child of . The rebalancing is performed through four separate rotation algorithms. 1/15/2019 CSE AU AVL Trees

17 AVL Insertion: Outside Case
f Consider a valid AVL subtree b h G h h A D 1/15/2019 CSE AU AVL Trees

18 AVL Insertion: Outside Case
f Inserting into A destroys the AVL property at node f b h G h+1 h D A 1/15/2019 CSE AU AVL Trees

19 AVL Insertion: Outside Case
f Do a “right rotation” b h G h+1 h D A 1/15/2019 CSE AU AVL Trees

20 f b G D A Single right rotation Do a “right rotation” h h+1 h
1/15/2019 CSE AU AVL Trees

21 Outside Case Completed
b “Right rotation” done! (“Left rotation” is mirror symmetric) f h+1 h h A G D AVL property has been restored! 1/15/2019 CSE AU AVL Trees

22 AVL Insertion: Inside Case
f Consider a valid AVL subtree b h G h h A D 1/15/2019 CSE AU AVL Trees

23 AVL Insertion: Inside Case
f Inserting into D destroys the AVL property at node f Does “right rotation” restore balance? b h G h h+1 A D 1/15/2019 CSE AU AVL Trees

24 AVL Insertion: Inside Case
b “Right rotation” does not restore balance… now b is out of balance f h A h h+1 G D 1/15/2019 CSE AU AVL Trees

25 AVL Insertion: Inside Case
f Consider the structure of subtree Y… b h G h h+1 A D 1/15/2019 CSE AU AVL Trees

26 AVL Insertion: Inside Case
f Y = node i and subtrees V and W b h G d h h+1 A h or h-1 C E 1/15/2019 CSE AU AVL Trees

27 AVL Insertion: Inside Case
f We will do a left-right “double rotation” . . . b G d A C E 1/15/2019 CSE AU AVL Trees

28 Double rotation : first rotation
left rotation complete d G b E C A 1/15/2019 CSE AU AVL Trees

29 Double rotation : second rotation
f Now do a right rotation d G b E C A 1/15/2019 CSE AU AVL Trees

30 Double rotation : second rotation
right rotation complete Balance has been restored d b f h h h or h-1 C A E G 1/15/2019 CSE AU AVL Trees

31 Example of Insertions in an AVL Tree
3 20 Insert 5, 40 1 2 10 30 1 1 25 35 1/15/2019 CSE AU AVL Trees

32 Example of Insertions in an AVL Tree
3 4 20 20 2 2 2 3 10 30 10 30 1 1 1 2 1 1 5 25 35 5 25 35 1 40 Now Insert 45 1/15/2019 CSE AU AVL Trees

33 Single rotation (outside case)
5 4 20 20 2 4 2 3 10 30 10 30 1 3 1 1 1 2 5 25 35 5 25 40 1 1 35 45 40 2 Imbalance 1 45 Now Insert 34 1/15/2019 CSE AU AVL Trees

34 Double rotation (inside case)
5 4 20 20 4 4 2 3 10 30 10 35 1 3 3 1 2 2 5 Imbalance 25 40 5 30 40 1 25 34 2 1 45 35 45 1 Insertion of 34 1 34 1/15/2019 CSE AU AVL Trees

35 AVL Tree Deletion Similar but more complex than insertion
Rotations and double rotations needed to rebalance Imbalance may propagate upward so that many rotations may be needed. 1/15/2019 CSE AU AVL Trees

36 Pros and Cons of AVL Trees
Arguments for AVL trees: Search is O(log N) since AVL trees are always balanced. Insertion and deletions are also O(logn) The height balancing adds no more than a constant factor to the speed of insertion. Arguments against using AVL trees: Difficult to program & debug; more space for balance factor. Asymptotically faster but rebalancing costs time. Most large searches are done in database systems on disk and use other structures (e.g. B-trees). May be OK to have O(N) for a single operation if total run time for many consecutive operations is fast (e.g. Splay trees). 1/15/2019 CSE AU AVL Trees

37 Deletion 6 100 4 5 44 144 2 3 4 3 17 62 117 162 1 1 2 2 3 2 2 32 50 78 111 132 150 178 1 1 2 1 1 1 1 72 101 128 132 147 172 181 1 129 1/15/2019 CSE AU AVL Trees

38 Deletion 6 100 4 5 44 144 1 3 4 3 17 62 117 162 1 1 2 2 3 2 2 32 50 78 111 132 150 178 1 1 2 1 1 1 1 72 101 128 132 147 172 181 1 129 1/15/2019 CSE AU AVL Trees

39 Deletion 6 100 5 44 144 4 3 17 62 117 162 2 3 2 2 50 78 111 132 150 178 1 2 1 1 1 1 72 101 128 132 147 172 181 1 129 1/15/2019 CSE AU AVL Trees

40 Deletion 6 100 5 62 144 4 3 44 117 162 78 2 3 2 2 17 50 72 111 132 150 178 1 2 1 1 1 1 101 128 132 147 172 181 1 129 1/15/2019 CSE AU AVL Trees

41 Deletion 6 100 3 5 62 144 2 4 3 2 44 117 162 78 1 1 1 2 3 2 2 17 50 72 111 132 150 178 1 2 1 1 1 1 101 128 132 147 172 181 1 129 1/15/2019 CSE AU AVL Trees

42 Deletion 6 100 3 5 62 144 2 4 3 2 44 117 162 78 1 1 1 2 3 2 2 17 50 72 111 132 150 178 1 2 1 1 1 1 101 128 132 147 172 181 1 129 1/15/2019 CSE AU AVL Trees

43 Deletion 100 62 144 44 117 162 78 17 50 72 111 132 150 178 101 128 132 147 172 181 129 1/15/2019 CSE AU AVL Trees

44 Deletion 100 62 117 44 144 78 111 17 50 72 101 132 162 128 132 150 178 129 147 172 181 1/15/2019 CSE AU AVL Trees

45 Deletion 117 100 144 62 111 132 162 44 78 101 128 132 150 178 17 50 72 129 147 172 181 1/15/2019 CSE AU AVL Trees

46 Deletion 5 117 4 4 100 144 3 2 3 3 62 111 132 162 2 2 1 2 1 2 2 44 78 101 128 132 150 178 1 1 1 1 1 1 1 17 50 72 129 147 172 181 1/15/2019 CSE AU AVL Trees


Download ppt "AVL Trees CSE 373 Data Structures."

Similar presentations


Ads by Google