Presentation is loading. Please wait.

Presentation is loading. Please wait.

Unit 7B Review.

Similar presentations


Presentation on theme: "Unit 7B Review."β€” Presentation transcript:

1 Unit 7B Review

2 1. Solve for all values of πœƒ such that 0β‰€πœƒ<2πœ‹
1. Solve for all values of πœƒ such that 0β‰€πœƒ<2πœ‹. Give answers in radians. sin 2 πœƒ = 3 4

3 1. Solve for all values of πœƒ such that 0β‰€πœƒ<2πœ‹
1. Solve for all values of πœƒ such that 0β‰€πœƒ<2πœ‹. Give answers in radians. sin 2 πœƒ = 3 4

4 2. Solve for al values of πœƒ such that 0β‰€πœƒ<2πœ‹
2. Solve for al values of πœƒ such that 0β‰€πœƒ<2πœ‹. Give answers in radians. sin πœƒ(2 cos πœƒ βˆ’1) =0

5 2. Solve for al values of πœƒ such that 0β‰€πœƒ<2πœ‹
2. Solve for al values of πœƒ such that 0β‰€πœƒ<2πœ‹. Give answers in radians. sin πœƒ(2 cos πœƒ βˆ’1) =0

6 3. Solve for all values of πœƒ such that 0 π‘œ β‰€πœƒ< 360 π‘œ
3. Solve for all values of πœƒ such that 0 π‘œ β‰€πœƒ< 360 π‘œ . Give answers in degrees. 3 tan πœƒ + 3 =0

7 3. Solve for all values of πœƒ such that 0 π‘œ β‰€πœƒ< 360 π‘œ
3. Solve for all values of πœƒ such that 0 π‘œ β‰€πœƒ< 360 π‘œ . Give answers in degrees. 3 tan πœƒ + 3 =0

8 4. Solve for all values of πœƒ such that 0 π‘œ β‰€πœƒ< 360 π‘œ
4. Solve for all values of πœƒ such that 0 π‘œ β‰€πœƒ< 360 π‘œ . Give answers in degrees. 2 cos πœƒ+1 tan πœƒ +1 =0

9 4. Solve for all values of πœƒ such that 0 π‘œ β‰€πœƒ< 360 π‘œ
4. Solve for all values of πœƒ such that 0 π‘œ β‰€πœƒ< 360 π‘œ . Give answers in degrees. 2 cos πœƒ+1 tan πœƒ +1 =0

10 5. Evaluate each trig function. Show work. A. sin 180 π‘œ B. cos 300 π‘œ C
5. Evaluate each trig function. Show work. A. sin 180 π‘œ B. cos 300 π‘œ C. tan 30 π‘œ D. sec 225 π‘œ

11 5. Evaluate each trig function. Show work. A. sin 180 π‘œ B. cos 300 π‘œ C
5. Evaluate each trig function. Show work. A. sin 180 π‘œ B. cos 300 π‘œ C. tan 30 π‘œ D. sec 225 π‘œ

12 5. Evaluate each trig function. Show work. A. sin 180 π‘œ B. cos 300 π‘œ C
5. Evaluate each trig function. Show work. A. sin 180 π‘œ B. cos 300 π‘œ C. tan 30 π‘œ D. sec 225 π‘œ

13 5. Evaluate each trig function. Show work. A. sin 180 π‘œ B. cos 300 π‘œ C
5. Evaluate each trig function. Show work. A. sin 180 π‘œ B. cos 300 π‘œ C. tan 30 π‘œ D. sec 225 π‘œ

14 5. Evaluate each trig function. Show work. A. sin 180 π‘œ B. cos 300 π‘œ C
5. Evaluate each trig function. Show work. A. sin 180 π‘œ B. cos 300 π‘œ C. tan 30 π‘œ D. sec 225 π‘œ

15 6. Evaluate each trig function. Show work. A. cot 3πœ‹ 2 B. sin 4πœ‹ 3 C
6. Evaluate each trig function. Show work. A. cot 3πœ‹ 2 B. sin 4πœ‹ 3 C. csc 7πœ‹ 6 D. cos βˆ’ 5πœ‹ 4

16 6. Evaluate each trig function. Show work. A. cot 3πœ‹ 2 B. sin 4πœ‹ 3 C
6. Evaluate each trig function. Show work. A. cot 3πœ‹ 2 B. sin 4πœ‹ 3 C. csc 7πœ‹ 6 D. cos βˆ’ 5πœ‹ 4

17 6. Evaluate each trig function. Show work. A. cot 3πœ‹ 2 B. sin 4πœ‹ 3 C
6. Evaluate each trig function. Show work. A. cot 3πœ‹ 2 B. sin 4πœ‹ 3 C. csc 7πœ‹ 6 D. cos βˆ’ 5πœ‹ 4

18 6. Evaluate each trig function. Show work. A. cot 3πœ‹ 2 B. sin 4πœ‹ 3 C
6. Evaluate each trig function. Show work. A. cot 3πœ‹ 2 B. sin 4πœ‹ 3 C. csc 7πœ‹ 6 D. cos βˆ’ 5πœ‹ 4

19 6. Evaluate each trig function. Show work. A. cot 3πœ‹ 2 B. sin 4πœ‹ 3 C
6. Evaluate each trig function. Show work. A. cot 3πœ‹ 2 B. sin 4πœ‹ 3 C. csc 7πœ‹ 6 D. cos βˆ’ 5πœ‹ 4

20 7. Convert 120 π‘œ to radians.

21 7. Convert 120 π‘œ to radians.

22 8. Convert βˆ’ 17πœ‹ 6 to degrees.

23 8. Convert βˆ’ 17πœ‹ 6 to degrees.

24 9. Give the point of the unit circle that corresponds to give angle πœƒ.
A. πœƒ=225 π‘œ B. πœƒ=βˆ’ 2πœ‹ 3

25 9. Give the point of the unit circle that corresponds to give angle πœƒ.
A. πœƒ=225 π‘œ B. πœƒ=βˆ’ 2πœ‹ 3

26 9. Give the point of the unit circle that corresponds to give angle πœƒ.
A. πœƒ=225 π‘œ B. πœƒ=βˆ’ 2πœ‹ 3

27 10. Which quadrant (or quadrants) could contain the terminal side of the given angle in standard position given the value of the trig functions? cos πœƒ <0 B. tan πœƒ <0 and sec πœƒ <0 C. sin πœƒ >0 and cos πœƒ <0

28 10. Which quadrant (or quadrants) could contain the terminal side of the given angle in standard position given the value of the trig functions? cos πœƒ <0 B. tan πœƒ <0 and sec πœƒ <0 C. sin πœƒ >0 and cos πœƒ <0

29 10. Which quadrant (or quadrants) could contain the terminal side of the given angle in standard position given the value of the trig functions? cos πœƒ <0 B. tan πœƒ <0 and sec πœƒ <0 C. sin πœƒ >0 and cos πœƒ <0

30 10. Which quadrant (or quadrants) could contain the terminal side of the given angle in standard position given the value of the trig functions? cos πœƒ <0 B. tan πœƒ <0 and sec πœƒ <0 C. sin πœƒ >0 and cos πœƒ <0

31 11. Find the exact value of all six trig functions of πœƒ if cot πœƒ = 13 5 and πœ‹<πœƒ< 3πœ‹ 2

32 11. Find the exact value of all six trig functions of πœƒ if cot πœƒ = 13 5 and πœ‹<πœƒ< 3πœ‹ 2

33 12. Give a positive and negative co-terminal angle for the given:
A π‘œ B. 2πœ‹ 11

34 12. Give a positive and negative co-terminal angle for the given:
A π‘œ B. 2πœ‹ 11

35 12. Give a positive and negative co-terminal angle for the given:
A π‘œ B. 2πœ‹ 11

36 13. Sketch the angle in standard position
13. Sketch the angle in standard position. Then show the reference angle πœƒβ€² and give its measure. A. βˆ’ 632 π‘œ B. 11πœ‹ 7

37 13. Sketch the angle in standard position
13. Sketch the angle in standard position. Then show the reference angle πœƒβ€² and give its measure. A. βˆ’ 632 π‘œ B. 11πœ‹ 7

38 13. Sketch the angle in standard position
13. Sketch the angle in standard position. Then show the reference angle πœƒβ€² and give its measure. A. βˆ’ 632 π‘œ B. 11πœ‹ 7


Download ppt "Unit 7B Review."

Similar presentations


Ads by Google